Rinaldo Cervellati
Quando ai chimici capita di avere a che fare con il simbolo stilizzato del benzene, con un cerchio inscritto in un esagono, quasi inevitabilmente il pensiero va agli orbitali molecolari dei sei elettroni p degli atomi di carbonio della molecola. Tuttavia questo simbolo fu introdotto a rappresentare il “sestetto aromatico” nel 1925 dai chimici britannici James W. Armit e Sir Robert Robinson[1] [1], qualche anno prima dell’interpretazione in base al concetto di risonanza di Pauling (1928) e del metodo degli orbitali molecolari di Hückel (1931).

Sir Robert Robinson
Arbit e Robinson scrivono:
…il possesso di tali gruppi [elettronici] conferisce stabilità chimica come mostrato, per esempio, da una ridotta insaturazione e dalla tendenza a mantenere il tipo[chimico]. Queste sono, naturalmente, le caratteristiche principali dei sistemi benzenici, e qui la spiegazione è ovviamente che sei elettroni sono in grado di formare un gruppo che resiste alla rottura e possono essere denominati il sestetto aromatico [enfatizzato nell’originale]. Perciò:
Il cerchio nell’anello simboleggia l’opinione che sei elettroni nella molecola di benzene producono una associazione stabile che è responsabile del carattere aromatico della sostanza.[1].
Gli autori non cercano di interpretare il motivo per cui questi sei elettroni conferiscano questa particolare proprietà, essi si muovono nell’ambito della teoria di Lewis e poiché in tale teoria un legame a coppia elettronica condivisa viene rappresentato con un segmento che collega i due atomi contraenti il legame, ritengono opportuno usare un particolare simbolo per il sestetto elettronico responsabile dell’aromaticità. Al momento, scrivono Armit e Robinson, non si richiede alcuna assunzione particolare per quanto riguarda la posizione degli elettroni o delle loro orbite nello spazio.
Riprenderemo più avanti le idee di Robinson in proposito, vale tuttavia la pena ricordare che il cerchio inscritto nell’esagono cominciò a essere largamente usato nei testi e nei lavori di chimica organica solo più di venticinque anni dopo, verso la fine degli anni ’50 − inizio degli anni ’60 del secolo scorso.
L’interpretazione della geometria e della struttura della molecola del benzene fin dalla sua scoperta nel 1825 da parte di Michael Faraday[2] che lo isolò dal residuo oleoso della produzione del gas illuminante[3], chiamandolo bicarburo di idrogeno, è una storia lunga e complicata che qui viene riassunta senza pretesa di completezza. Molti altri composti con le proprietà del benzene furono scoperti in seguito, tanto che nel 1855 il chimico tedesco August Wilhelm von Hofmann (1818 – 1892) usò per essi il termine aromatici[4].
Nel 1834 fu determinata la formula minima del benzene (CH) e qualche tempo dopo la sua formula molecolare, C6H6, la prima molecola conosciuta con un numero uguale di atomi di carbonio e idrogeno. Altri fattori intrigarono i chimici del 1800 nel tentativo di attribuire al benzene una ragionevole struttura molecolare, in particolare il fatto che preferisse di gran lunga le reazioni di sostituzione a quelle di addizione e non rispondesse ai test analitici tipici delle sostanze contenenti doppi o tripli legami.
Fra il 1867 e il 1899 furono proposte diverse possibili formule di struttura, le principali sono riportate in figura 2.
I chimici di oggi, soprattutto i più giovani, possono pensare che si tratti di baggianate prive di alcun fondamento ma le cose non stanno affatto così. Se questi tentativi (che comunque cercavano di accordarsi ai fatti sperimentali) non ci fossero stati, probabilmente la rappresentazione moderna (quella “vera”?) avrebbe richiesto più tempo. Inoltre si è poi scoperto che composti reali corrispondono ad alcune di esse. Ad esempio, il diene biciclico, biciclo[2.2.0]esa-2,5-diene, sintetizzato nel 1962 è anche chiamato diene di Dewar perché ha la stessa struttura di quella che Dewar propose per il benzene. Una molecola con struttura analoga a quella di Lademburg, esiste e si chiama prismano (tetraciclo[2.2.0.02,6.03,5]esano), chiamato anche benzene di Lademburg, sintetizzato nel 1973. Infine, il benzvalene (triciclo[3.1.0.02,6]esa-3-ene), sintetizzato nel 1971, ha una struttura somigliante a quella proposta da Armstrong per il benzene, ed è a partire da esso che si è ottenuto il prismano.
Si può far risalire la prima struttura geometrica in accordo con la reattività del benzene ai lavori di Friedrich August Kekulé von Stradonitz[5] che, basandosi sull’evidenza che tutti gli atomi di carbonio nel benzene sono equivalenti ai fini della sua reattività (un solo derivato monostituito, tre isomeri disostituiti), postulò che gli atomi di carbonio fossero legati tra loro a due a due alternativamente con un singolo e un doppio legame in un anello chiuso a forma esagonale.

F.A. Kekulè
Per spiegare il fatto che questa struttura insatura rispondesse in modo negativo ai saggi di insaturazione, Kekulé avanzò l’ipotesi che i legami doppi e semplici scambiassero la loro posizione lungo l’anello con velocità tanto elevata che le reazioni caratteristiche degli alcheni non potevano avvenire. Le formule di struttura originali di Kekulé sono riportate in figura 4
Guardando la formula di struttura proposta da Thiele[6] nel 1899, si potrebbe pensare che egli abbia preceduto Robinson nel rappresentare un cerchio inscritto in un esagono ma le cose non stanno così. Nella rappresentazione di Thiele il cerchio è tratteggiato e non a caso, egli nel tentativo di giustificare la struttura di Kekulé avanzò l’ipotesi della valenza parziale in relazione ai doppi legami carbonio−carbonio. Il cerchio tratteggiato starebbe quindi a indicare queste “valenze parziali”che poco hanno a che vedere con il sestetto aromatico di Robinson.
L’aneddotica ci racconta che nel 1890 durante un convegno in suo onore per il 25° anniversario della struttura esagonale del benzene, Kekulé raccontò che 25 anni prima si era addormentato davanti al fuoco e nel sonno aveva visto un serpente che si mordeva la coda (l’ouroboro, un antico simbolo di origine egizia rappresentante un serpente o un dragone che si mangia la coda). Lo scienziato si svegliò e per tutta la notte lavorò per risolvere l’enigma della struttura ciclica esagonale del benzene.

Tuttavia la versione italiana di wikipedia (https://it.wikipedia.org/wiki/Friedrich_August_Kekul%C3%A9_von_Stradonitz)
riporta che due biochimici americani, John Wotiz e Susanna Rudofsky, nel 1984, studiando gli archivi di Kekulé conservati all’università di Darmstadt trovarono alcuni riferimenti, rispettivamente del 1854 e del 1858, a un saggio del chimico francese August Laurent (1807-1856), mai più successivamente citato dallo scienziato tedesco. In questo saggio il chimico francese proponeva già per il cloruro di benzoile una formula di struttura esagonale. Sembra quindi che quando Kekulé pubblicò la struttura esagonale del benzene ne avesse idea fin da circa dodici anni prima, ciò che non gli toglie nulla ma ridimensiona un aneddoto circolato per molto tempo.
Nonostante l’enorme importanza che ebbero nello sviluppo della strutturistica organica, le formule di Kekulé non si accordavano con le evidenze sperimentali per cui le lunghezze dei sei legami C−C dell’anello sono tutte uguali cui corrisponde un’energia di legame intermedia fra quella di un singolo e di un doppio legame. Ciò ci riporta al sestetto di Sir Robinson e alle prime interpretazioni quantomeccaniche. Come ricordato all’inizio del post, nella seconda metà degli anni venti e l’inizio anni trenta del secolo scorso nascono e iniziano a svilupparsi parallelamente due teorie con lo scopo di applicare la meccanica quantistica all’interpretazione del legame chimico: la teoria del legame di valenza (VB) e quella dell’orbitale molecolare (MO). Le due teorie si diversificano in quanto la prima si concentra sugli orbitali degli elettroni fra atomi che contraggono il legame, mentre la seconda considera l’insieme degli orbitali elettronici nella molecola. Nella teoria VB ha giocato un ruolo importante il concetto di risonanza, introdotto da Linus Pauling[7] nel 1928, come un modo di descrivere elettroni delocalizzati entro certe molecole o ioni molecolari per i quali il legame non può essere espresso con un’unica struttura di Lewis. Una molecola (o ione) con tali elettroni delocalizzati è rappresentato da più strutture (chiamate anche strutture di risonanza o strutture canoniche) che nel loro insieme contribuirebbero alla struttura della molecola (o dello ione). La struttura del benzene sarebbe quindi un ibrido di risonanza fra le due strutture di Kekulé, schematizzata come in figura 5:
le (principali) strutture canoniche essendo separate dal simbolo della freccia a doppia testa.
Sir Robinson non accettò mai la teoria della risonanza e questo suo istinto era giustificato. Gli argomenti su cui Pauling aveva basato il concetto di risonanza si rivelarono in seguito poco fondati e di natura puramente fenomenologica.

Come sappiamo oggi le due teorie (VB e MO) sono sostanzialmente equivalenti, conducendo in tutti i casi a conclusioni simili. L’unica differenza sta nel formalismo usato e nel concetto di risonanza, rivelatosi, secondo alcuni, fuorviante per i chimici organici, avendo dato luogo a numerosi errori e malintesi. Ad esempio, Hugh Longuet-Higgins[8] ebbe ad affermare che la teoria della risonanza, lungi da essere una benedizione, aveva contribuito poco all’avanzamento della chimica del 20° secolo [2]. George Willard Wheland (1907-1972), allievo di Pauling, estimatore e diffusore della teoria della risonanza però scrisse:
“la risonanza è concetto inventato dall’uomo, in un certo senso più fondamentale della maggior parte delle altre teorie fisiche. Non corrisponde ad alcuna proprietà intrinseca della molecola stessa, ma è solo uno strumento matematico deliberatamente inventato dal fisico o chimico per la propria convenienza.” [3]
Molti pensano che sarebbe opportuno eliminare i termini risonanza ed energia di risonanza, sostituendoli con delocalizzazione ed energia di delocalizzazione.
Un ulteriore episodio contribuì ad alimentare la sfiducia di Sir Robertson verso la chimica quantistica. Lord Todd e J.W. Cornforth, biografi di Robinson, così lo raccontano [2].
Nel 1931 Erich Hückel[9] pubblicò un trattamento teorico (teoria MO) sulle sostituzioni aromatiche elettrofile giungendo alla conclusione che l’effetto di gruppi elettron attrattori doveva essere orto- para direttore, mentre i gruppi elettron repulsori sarebbero stati meta direttori. Conclusioni diametralmente opposte a quelle espresse da Robinson e sostenute da Lapworth, sicché i due scrissero una nota alla rivista Nature affermando che i risultati di Hückel erano in netto contrasto con le evidenze chimiche sperimentali. Hückel replicò, più con compatimento che con rabbia, che le sue conclusioni erano una conseguenza diretta della teoria quantistica, quindi al di là di ogni critica, pertanto dovevano essere i chimici organici a trovare l’errore nei loro esperimenti. Infastidito da questa supponenza Robinson interpellò Edward Milne, famoso matematico e fisico-matematico a Oxford per chiedergli di controllare i calcoli di Huckel. Dopo aver ascoltato attentamente Robinson, Milne rispose: “Se ho ragione, Hückel ha ottenuto tutto esattamente al contrario. In tal caso è ovvio cosa è successo, ha sbagliato un segno”. Tuttavia Milne rifiutò di perdere tempo a cercare uno sbaglio di segno nei calcoli di Hückel. Per quanto lo riguardava, la cosa finiva lì, per Robinson fu anche la fine della chimica quantistica.
(L’errore fu trovato più tardi dal chimico americano George Willard Wheland, però non era così banale come aveva pensato Milne. Hückel fece una serie di assunzioni semplificative non giustificabili o scorrette. Lo sbaglio non riguarda quindi la chimica quantistica, ma il suo uso scorretto da parte di Hückel).
La sfiducia di Sir Robinson nella chimica quantistica durò fino alla fine della sua vita. A questo proposito Lord Todd e J.W. Cornforth affermano:
Il primo trattamento quantistico rappresentò invero un effettivo avanzamento rispetto al concetto originale di Robinson del sestetto elettronico, culminato nei lavori di Lennard-Jones e Coulson[10] dell’inizio anni ’40 ma ci volle diverso tempo per essere fruibile, anche a causa della mancanza di sensibilità chimica da parte di coloro che vi contribuirono. Se Robinson avesse avuto un atteggiamento diverso e si fosse impegnato a fondo nello studio dei metodi quantomeccanici e con la sua profonda conoscenza della chimica organica, probabilmente la chimica organica teorica avrebbe seguito uno sviluppo molto più rapido [2].
Comunque il simbolo dell’esagono con cerchio inscritto non ebbe subito un grande impatto nei testi di chimica organica, lo stesso Robinson non ne fece uso nel suo saggio sulla teoria elettronica dei composti organici 4]. Solo alla fine del 1950 e primi anni 1960 il simbolo finalmente fece la sua comparsa nei testi introduttivi di chimica organica, in particolare nell’edizione 1959 del conosciutissimo testo di Morrison e Boyd, dove fu utilizzato non solo per il benzene, ma anche per naftalene, antracene, fenantrene e altri aromatici policiclici [5, 6]. Ma il dibattito sull’uso del simbolo non è cessato. Ancora nei tardi anni ’90 due autori avevano idee diametralmente opposte: McMurray (1996) rifiuta di usarlo considerandolo ambiguo mentre Solomons (1992) ne fa ampio uso. Questo dibattito prosegue anche sul significato del simbolo. Alcuni vorrebbero restringerlo al sestetto aromatico del benzene, come nell’originale intenzione di Robinson, altri lo ritengono applicabile a tutti i composti che obbediscono alla regola di Huckel[11] per l’aromaticità [6].
Infine, data l’importanza del simbolo per l’anello benzenico gli sono stati assegnati due unicode uno per l’esagono con cerchio inscritto:
http://www.fileformat.info/info/unicode/char/23e3/index.htm
l’altro per l’esagono con i tre doppi legami alternati: http://www.fileformat.info/info/unicode/char/232c/index.htm
Bibliografia
[1] J. W. Amit, R. Robinson, Polynuclear Heterocyclic Aromatic Types. Part II. Some Anhydronium Bases, J. Chem. Soc., 1925, 1604-1618.
[2.] Lord Todd and J. W. Cornforth, Robert Robinson 13 September 1886 – 8 February 1975., Biogr. Mems Fell. R. Soc., 1976, 414-527.
[3] George Willard Wheland, The Theory of Resonance and Its Application to Organic Chemistry, John Wiley & Sons, New York, 1944 (1a Ed.), 1955 (2a Ed.)
[4]R. Robinson, Outline of an Electrochemical (Electronic) Theory of the Course of Organic Reactions, Institute of Chemistry: London, 1932.
[5]R. T. Morrison, R. N. Boyd, Organic Chemistry, Allyn and Bacon: Boston, 1959. Gli autori originariamente utilizzarono linee tratteggiate per il cerchio. Nelle edizioni successive queste furono sostituite da linee continue.
[6] W.B. Jensen, The Circle Symbol for Aromaticity, J. Chem. Educ., 2009, 86, 423-424.
[1] Sir Robert Robinson (1886-1975) chimico organico britannico. Premio Nobel per la Chimica 1947 per i suoi studi sui composti contenuti nelle piante: polifenoli, antociani e alcaloidi. Noto anche per alcune sintesi e per la scoperta della struttura molecolare di morfina e penicillina. A lui si deve l’introduzione delle frecce per indicare gli spostamenti elettronici nei meccanismi della chimica organica. Membro dell’Ordine al Merito del Regno Unito 1949.
[2] Michael Faraday (1791-1867), insigne fisico e chimico inglese noto sopratutto per i suoi contributi fondamentali nell’elettromagnetismo e nell’elettrochimica.
[3] Il gas illuminante (o gas di città), ampiamente usato per l’illuminazione notturna delle città prima dell’energia elettrica, veniva ottenuto per distillazione del carbon fossile (litantrace) e distribuito attraverso un complicato sistema di tubazioni. Tipicamente la miscela gassosa era costituita dal 50% di idrogeno, 35% di metano, 10% di monossido di carbonio e 5% di etilene. In alcune città, ad es. Bologna, nei pressi della Stazione Centrale è ancora in piedi l’enorme struttura cilindrica del gasometro, dove veniva immagazzinato il gas illuminante.
[4] Il termine si riferì inizialmente ai derivati del benzene che hanno in generale un odore gradevole, al contrario dei composti alifatici, successivamente fu esteso a molti composti, ad es. contenuti nelle piante anch’essi di odore gradevole. Va detto comunque che vi sono composti “aromatici” dal cui “aroma” è meglio stare alla larga…
[5] Friedrich August Kekulé von Stradonitz (1829-1896) chimico tedesco pubblicò un primo lavoro sul benzene nel 1865 in francese perché in quell’anno stava insegnando nel Belgio francofono (Kekulé, F.S,. Sur la constitution des substances aromatiques., Bulletin de la Societe Chimique de Paris, 1865, 3, 98–110.). L’anno successivo pubblicò un più ampio articolo in tedesco sullo stesso argomento (Untersuchungen über aromatische Verbindungen., Liebigs Annalen der Chemie und Pharmacie. 1866, 137, 129–36). Nella seconda metà del XIX secolo Kekulé è stato uno dei più eminenti chimici.
[6] Friedrich Karl Johannes Thiele (1865 – 1918), chimico organico tedesco, mise a punto diversi strumenti per la sintesi organica compreso un apparecchio per la misura del punto di fusione, detto tubo di Thiele. Fra le sintesi che si devono a lui ricordiamo la condensazione di chetoni e aldeidi con ciclopentadiene come strada per ottenere fulveni.
[7] Linus Carl Pauling (1901-1994) americano, chimico, biochimico, educatore, attivista per la pace, Premio Nobel per la chimica 1954 “per le sue ricerche sulla natura del legame chimico e la sua applicazione all’elucidazione della struttura di sostanze complesse”. Oltre che della chimica quantistica è considerato anche fondatore della biologia molecolare. Nel 1962 ottenne anche il Premio Nobel per la pace “per la sua campagna contro i test nucleari”.
[8] Hugh Cristopher Longuet-Higgins (1923-2004), inglese, chimico teorico e cognitivista, ancora prima di ottenere il dottorato propose la struttura corretta per il diborano B2H6 con legame a 2centri-3elettroni fra i due anelli H2B, talvolta detto legame a banana. Fu professore di Fisica teorica a Cambridge, poi cominciò a interessarsi di intelligenza artificiale e nel 1967 si trasferì a Edimburgh dove co-fondò il Dipartimento di Intelligenza delle Macchine. Cambiò ulteriormente interesse, occupandosi di psicologia sperimentale all’università del Sussex.
[9] Erich Armand Arthur Joseph Hückel (1896-1980), chimico e fisico tedesco. Noto principalmente per lo sviluppo della teoria di Debye-Huckel per le soluzioni elettrolitiche e per il metodo di Hückel per il calcolo approssimato degli orbitali molecolari di sistemi π.
[10] Charles Alfred Coulson (1910 –1974) britannico, matematico applicativo e chimico teorico. Considerato un pioniere nell’applicazione della teoria quantistica della valenza a problemi di struttura molecolare, dinamica e reattività. Curioso il fatto che Coulson succedette a Milne come Professore di Matematica a Oxford nel 1952. Fu poi chiamato a ricoprire la cattedra di Chimica teorica, istituita nel 1972.
[11] Secondo questa regola, tra tutti i composti ciclici, quelli aromatici: (a) hanno struttura planare e atomi di carbonio ibridati sp2; (b) hanno un numero di elettroni π delocalizzati su tutto il ciclo, pari a 4n + 2, dove n è un numero intero maggiore o uguale a 0.