La serendipità della camola.

Claudio Della Volpe

La “camola” del miele è un tipico verme da pescatore e dato che ogni tanto mi dedico alla pesca conosco questo tipo di esca viva, anche se di solito uso il “cucchiaino”, ossia un pezzo di metallo brillante opportunamente sagomato e che nasconde l’amo.

Galleria Mellonella da Wikipedia

La camola è comodissima come esca viva, si compra in contenitori e si conserva in frigorifero per un pò (la camola usata per scopi alieutici è trattata opportunamente con un breve riscaldamento che ne impedisce l’imbozzolamento e forse ne modifica il set enzimatico); il suo ciclo di vita la qualifica come un parassita delle api, dato che si nutre dei prodotti dell’alveare e la sua forma finale è una farfallina, la tarma maggiore della cera, tecnicamente Galleria mellonella.

La camola è usata per pescare grazie al suo sapore dolce; è uno degli insetti che ho anche provato a mangiare, dato che viene proposto come alternativa alla carne comune in molte ricette basate su insetti, e vi assicuro che è molto buona.

La camola è al centro di una scoperta che rischia di rivoluzionare il nostro modo di gestire il riciclo della plastica comune; il grosso della plastica, dei polimeri prodotti dal petrolio è difficile da riciclare sostanzialmente per il medesimo motivo per cui la usiamo: la sua durabilità, legata alla stabilità del legame C-C che è difficilmente attaccato in natura (solo a certe condizioni).

Si conosce un batterio i cui enzimi sono in grado di degradare il PET, scoperto solo l’anno scorso in Giappone in un discarica di immondizia; la scoperta del batterio, denominato Ideonella sakaiensis 201-F6, è stata pubblicata su Science (A bacterium that degrades and assimilates poly(ethylene terephthalate) Shosuke Yoshida et al. Science 351, 1196 (2016).

Quando cresciuto sul PET questo particolare strain batterico produce due enzimi capaci di idrolizzare il PET e l’intermedio di rezione l’acido mono(2-idrossietil)tereftalico. Entrambi gli enzimi sono richiesti per convertire efficientemente PET in due monomeri molto più amichevoli dal punto di vista ambientale, l’acido tereftalico e l’etilen-glicole.

Shosuke Yoshida et al. Science 351, 1196 (2016)

La velocità digestiva del batterio è di una frazione di mg di PET per ogni cm2 di superficie attaccata e il PET è un poliestere, dunque con una struttura, mostrata in figura, molto più semplice da degradare (i legami sono O-C-O).

Altre specie viventi sono in grado di attaccare invece il legame C-C e sono riportate in letteratura (Penicillium simplicissimum, Nocardia asteroides, il verme Plodia interpunctella, e i due batteri, Bacillus sp. YP1 and Enterobacter asburiae YT1 che vivono dentro di lui), ma la velocità di aggressione è sempre estremamente bassa.

Ora, come si dice, il caso aiuta la mente preparata. E questo è avvenuto con Federica Bertocchini, che si occupa di biologia dello sviluppo.

Federica Bertocchini(da Repubblica del 25 aprile 2017)

La ricercatrice italiana Federica Bertocchini affiliata al Cnr spagnolo e oggi all’Istituto di biomedicina di Cantabria, a Santander. racconta a Repubblica “Io in realtà mi occupo di biologia dello sviluppo: studio gli embrioni. La scoperta del bruco mangiaplastica è avvenuta per caso. Ho l’hobby dell’apicoltura, e l’abitudine – in inverno – di tenere gli alveari vuoti in casa. Nel tirarli fuori per la primavera, l’anno scorso mi sono accorta che erano pieni di questi bachi. Così li ho ripuliti, raccogliendo i bachi in una borsa di plastica. Qualche ora dopo era già piena di buchi e le larve libere”

Federica non si è fatta pregare, ha subito capito che aveva trovato una miniera d’oro in quelle camole. E questa è serendipità, il caso aiuta la mente preparata.

Il risultato di una indagine più approfondita è stato pubblicato su Current Biology (Current Biology 27, R283–R293, April 24, 2017)

Come si vede la velocità di aggressione del bruco nei confronti della plastica del sacchetto è di ordini di grandezza superiore rispetto a quello di altri organismi trovati in natura (un bruco in 12 ore mangia quasi 1mg di PE). La camola sembra essere capace non solo di aggredire meccanicamente ma di digerire il PE; questo è stato provato analizzando lo spettro IR del materiale dopo digestione; si è trovata la presenza di etilenglicole; si pensa quindi che un sistema enzimatico del bruco sia in grado di fare una reazione simile a quella del batterio giapponese ma ad una velocità molto più elevata.

Tuttavia ci sentiamo di chiosare la scoperta indicandone anche i limiti: da una parte le camole sono nemiche delle api, dunque attenzione ai possibili effetti collaterali di una diffusione delle camole, come mangiatori diretti della plastica; meglio sarebbe individuare ed usare l’enzima o il sistema enzimatico; e comunque anche questo non dovrebbe essere una scusa per tornare indietro lungo la strada del riciclo dei materiali, ma anzi dovrebbe essere usato proprio per riciclare a partire dai prodotti di degradazione.

Altri studi saranno necessari per comprendere l’esatto meccanismo del processo digestivo della umile camola, (o casomai di qualcuno dei suoi ospiti batterici) un vermetto da pescatore pieno di segreti incredibili (notate che nessun giornale quotidiano o la TV ha capito di cosa si tratta, parlano tutti di un bruco, un verme e casomai qualche giornalista pescatore l’avrà anche usato, ma solo Le Scienze cita la camola).

Non c’è che dire la vita è la reazione chimica meglio riuscita! E un brava a Federica, una biologa dello sviluppo dotata di serendipità.

8 pensieri su “La serendipità della camola.

  1. Il batterio giapponese contiene una o più idrolasi che idrolizzano i legami esteri; in questo caso il meccanismo deve essere invece diverso ( trovo un po’ semplicistico, nel lavoro pubblicato su Current Biology, dire che si forma glicole etilenico sulla base di un picco di assorbimento all’IR, visto che altre specie idrossilate potrebbero avere lo stesso segnale all’IR; è interessante che si veda un assorbimento attribuibile ad un segnale carbonilico). Ovviamente per formulare un corretto meccanismo sarebbe necessario un’indagine approfondita dei prodotti di reazione; tuttavia riterrei verosimile che siano coinvolti inizialmente enzimi deidrogenativi con formazione quindi di legami CH=CH nel PE che poi verrebbero attaccati o da enzimi perossidasi ( in posizione alfa) con formazione di specie -CH=CH-CH(OH)-CH2- o enzimi mono- o di-ossigenasi con formazione di epossidi e/o dioli; questi prodotti ossidrilati potrebbero poi subire l’attacco di enzimi ( es. liasi) che rompono legami carbonio-carbonio. Ad es. , come nella sintesi di fragranze da acidi grassi insaturi, dopo la perossidazione, delle idroperossido aldeido liasi genererebbero un’aldeide ed un alcool o due aldeidi ( che successivamente potrebbero essere ridotte ad alcooli)con rottura di legame C-C frammentando così il PE.

  2. Bell’articolo. Sulle prospettive future e le possibili applicazioni pratiche occorre aspettare qualche studio ed approfondimento ulteriore.

  3. Chiaro e ottimo articolo su un tema importante. Vorrei notare pero’ che e’ eccessivo dire che il legame C-C e’ difficilmente attaccato in natura. Questo e’ vero per gli idrocarburi saturi, e per le molecole anche funzionalizzate ma di lunghezza molto grande, come e’ il caso appunto per le materie plastiche. Ma molte sostanze, per es. gli acidi grassi, contengono in maggioranza legami C-C e sono perfettamente metabolizzate, anche dall’uomo.

  4. Pingback: Ancora sul problema dei rifiuti di plastica | La Chimica e la Società

  5. Pingback: Lebbra antiplastica: dalla fantasia alla realtà. | La Chimica e la Società

I commenti sono chiusi.