Dai lavori scientifici ai testi didattici: il caso del Numero di Avogadro.2.

Rinaldo Cervellati

La prima parte di questo post è pubblicata qui.

Un tempo ancora maggiore dovrà comunque passare affinché la costante o numero di Avogadro entri a far parte dei contenuti dei libri di testo di chimica a livello di liceo. Secondo Jensen [1] occorre aspettare gli anni ’50 del secolo scorso. Quali e quante modifiche sono intervenute in questo lasso di tempo nei libri per il liceo?

Esamineremo anzitutto l’edizione 1918 del libro Essentials of Modern Chemistry, di Charles E. Dull[1] [2], professore di chimica nella South Side High School di Newark, N.J.

Sebbene gli argomenti oggetto del nostro studio siano presentati solo nei Capitoli XII (Teoria atomica-Pesi atomici) e XIII (Leggi dei Gas-Pesi molecolari) analogamente al testo di Cooley (destinato al college), l’esposizione è diversa. Dull si dilunga sul concetto di peso equivalente o di combinazione per introdurre la teoria atomica di Dalton e interpretare le leggi ponderali delle combinazioni chimiche. Il passaggio ai pesi atomici è sintetizzato come segue:

I pesi atomici relativi sono stati determinati per via indiretta. L’atomo più leggero è l’idrogeno. Il suo peso viene posto uguale a 1. Poiché l’atomo di ossigeno è 16 volte più pesante di quello di idrogeno, il peso atomico dell’ossigeno è 16. Il peso atomico di qualsiasi elemento è il rapporto fra il peso del suo atomo e il peso dell’atomo di idrogeno. [2, p. 113]

Chiarisce poi che i pesi atomici usati nel libro sono approssimati e basati su una scala più conveniente in cui lo standard è la sedicesima parte del peso atomico dell’ossigeno posto uguale a 16. Tratta poi la composizione centesimale, le formule dei composti e come ottenere la formula più semplice.

Nel capitolo successivo, partendo dalle leggi di Gay-Lussac sui rapporti fra i volumi delle combinazioni in fase gas ne deriva l’ipotesi di Avogadro chiamandola volta a volta legge o teoria. Da questa ipotesi fa derivare il fatto che le molecole degli elementi gassosi contengono due atomi, poi scrive:

Dalla teoria di Avogadro i rapporti fra i volumi non cambiano se si sostituisce il termine molecola al termine volume. [2, p. 120-121]

Il contributo fondamentale di Cannizzaro e il lungo periodo trascorso per arrivare a questo risultato sono completamente ignorati da Dull.

In compenso viene definita la mole come:

Una mole può essere definita come il peso grammo-molecolare di una sostanza. Una mole di ogni sostanza è il suo peso molecolare in grammi. Ad esempio una mole di idrogeno è 2 grammi. Una mole di ossigeno è 32 g…una mole di acqua è 18 grammi.[2, p. 121]

Introduce poi il concetto di volume molare di un gas stabilendo che:

…una mole di qualsiasi gas occupa un volume di 22.4 litri in condizioni standard di pressione e temperatura. [2, p. 122]

Si serve poi di questo fatto per la determinazione del peso molecolare delle sostanze gassose. Per i composti non volatili ricorre quindi alle proprietà colligative abbassamento del punto di congelamento e innalzamento del punto di ebollizione. Segue la determinazione delle formule molecolari dei composti. Due curiosità:

Nella prefazione, Dull suggerisce che se il libro viene usato per studenti che non si stiano preparando per il College, i capitoli sulla teoria della ionizzazione e sull’equilibrio possono essere omessi. Il libro termina con brevi biografie di importanti chimici.

Il libro di Dull vide diverse edizioni successive. In quella del 1936 [3], i capitoli relativi a quanto ci interessa non sono sostanzialmente cambiati rispetto alla prima edizione. Accanto alle leggi dei gas viene presentata, nella forma PV/T = P’V’/T’ la “Legge del Gas” (Gas Law). Come nell’edizione precedente l’enfasi viene posta sul concetto di mole e volume molare dei gas e sulle proprietà colligative per la determinazione della formula dei composti.

La novità sta nel capitolo sulla valenza. Dopo la definizione “classica”, cioè capacità di un dato atomo di legarsi o sostituirsi con uno o più atomi di idrogeno [3, p. 177], Dull introduce la teoria elettronica della valenza. Il modello atomico è quello planetario. L’autore è comunque ancora lontano da concetti come legame ionico e legame covalente.

Per trovare la definizione di numero di Avogadro e il suo valore numerico si deve aspettare l’edizione di Modern Chemistry del 1958 [4].

Dopo aver definito il peso grammo atomico come il peso di un elemento in grammi uguale al suo peso atomico, comunemente riferito come grammo-atomo, si afferma che il fatto più significativo riguardante i pesi grammo-atomici è che grammo atomi di tutti gli elementi contengono lo stesso numero di atomi. Questo numero viene chiamato numero di Avogadro, il cui valore moderno accettato è 6.0238×1023atomi per grammo atomo di qualsiasi elemento. Allo stesso modo definisce la grammo-molecola, affermando che…Grammo-molecole di tutte le sostanze contengono lo stesso numero di molecole. Questo numero è il numero di Avogadro, 6.0238×1023molecole per grammo-molecola.[4, p. 176]. Prosegue poi:

Il peso grammo-molecolare è un’unità così utile per i chimici che a esso è stato dato un nome corto: mole. Il concetto di mole è stato esteso per includere quelle sostanze che non hanno molecole. Così il peso della grammo-formula (il peso della formula in grammi) del cloruro di sodio è… [4, p. 177]

La valenza è presentata dal punto di vista elettronico in termini di legame ionico e covalente e di strutture di Lewis e, in precedenza, la struttura atomica è presentata in base alla teoria di Bohr. Questa edizione del libro riporta ancora il nome di Dull, sebbene egli fosse deceduto nel 1947. Successivamente Harold Clark Metcalfe[2] curò insieme a J.E. Williams e J.F. Castka ben 12 edizioni di Modern Chemistry, sempre per la Holt, Rinehart & Winston Inc. con grande successo.

In particolare la traduzione italiana dell’edizione 1974, tradotta e adattata da F. Cotta Ramusino e A. Pepe per Edizioni Cremonese, Roma, 1975, conobbe un enorme boom di adozioni negli anni fra l’uscita e il decennio successivo.

Nota. Se il corso introduttivo di chimica per il biennio della media superiore (15-16 anni di età, compimento dell’obbligo) è quindi un insegnamento destinato a tutti per una formazione culturale completa ci si può chiedere, come già è stato fatto in questo blog,

(https://ilblogdellasci.wordpress.com/2015/12/02/la-mole-nascosta/), se questi argomenti sono proprio necessari.

Bibliografia

[1] W. B. Jensen, Avogadro’s Number How and When Did It Become Associated with Avogadro’s Name?, J. Chem. Educ., 2007, 87, 223.

[2] Charles E. Dull, Essentials of Modern Chemistry, Henry Holt & Co., New York, 1918

https://archive.org/details/essentialsmoder01dullgoog

[3] Charles E. Dull, Modern Chemistry, Henry Holt & Co., New York, 1936

https://archive.org/details/in.ernet.dli.2015.260885

[4] H.C. Metcalfe, John E Williams, Charles E. Dull, Modern Chemistry, Henry Holt & Co., New York, 1958

https://archive.org/details/modernchemistry00dull_0

 

 

[1] Charles Elwood Dull (1878-1947) è stato Direttore del Dipartimento di Scienze della West Side High Scool e Supervisore di Scienze per le Junior e Senior High Schools, Newark, NJ.

[2] Harold Clark Metcalfe (1919-2001) è stato Direttore del Dipartimento di Scienze nella Wilkinsburg Senior High School, Wilkinsburg, PA.

One thought on “Dai lavori scientifici ai testi didattici: il caso del Numero di Avogadro.2.

  1. La mole diventa abbordabile ai minori se è alleggerita a numero. Come Ostwald, disinteressiamoci alla grandezza di cui è unità di misura, ma per ragioni opposte: abbiamo completa fiducia sulla esistenza e numerabilità delle entità atomico-molecolari e dobbiamo trasmettere questa fiducia anche negli studenti dell’obbligo, come obiettivo imprescindibile della chimica di base. La grandezza non era in realtà necessaria considerando la mol non in relazione alla massa ma un semplice numero di entità N, esprimibile per esteso o in mol, mmol ecc. Suppongo che la via complicata e “astrattizzante” sia stata scelta per accontentare tutti. Bastava invece prende un numero fisso, 0,602214 yotta unità o 602214 exa unità. In classe, al massimo si potrà illustrare con esempi perché conviene usare mol anziché yotta, zetta o exa o dozzine per contare le unità, se qualcuno lo chiede. Il problema dell’incertezza sperimentale è riconducibile a quella dell’oggetto scelto per rappresentare l’unità in cui esprimere le masse atomiche. Questa può anche essere nota con 25 cifre significative, ma data la variabilità della composizione isotopica, difficilmente si creeranno imprecisioni rilevanti troncando la mole ad un numero fisso con 6 cifre significative. In attesa che mol diventi un numero, dato che ora non lo è, per differenziare i due significati utilizziamo ad esempio Mol, un multiplo adimensionale compreso tra lo (zetta) Z e lo (zotta) Y.

Rispondi

Inserisci i tuoi dati qui sotto o clicca su un'icona per effettuare l'accesso:

Logo WordPress.com

Stai commentando usando il tuo account WordPress.com. Chiudi sessione / Modifica )

Foto Twitter

Stai commentando usando il tuo account Twitter. Chiudi sessione / Modifica )

Foto di Facebook

Stai commentando usando il tuo account Facebook. Chiudi sessione / Modifica )

Google+ photo

Stai commentando usando il tuo account Google+. Chiudi sessione / Modifica )

Connessione a %s...