Cenere sei e cenere ritornerai.

Claudio Della Volpe

Una frase famosa della Genesi (3,19), ma stavolta il gioco di parole (sostituendo cenere a polvere, ma tenete presente che dopo tutto la festa è “delle Ceneri”) mi serve per parlare di combustione e di incendi e di come si spengono gli incendi.

Quando ero un giovane studente di chimica una sera ho invitato a cena i nuovi amici che mi ero fatto, fra i quali anche qualche laureato e docente; mio padre che era anche lui appassionato di chimica (aveva fatto l’assistente di laboratorio durante la prigionia nella 2 guerra mondiale) partecipava alla conversazione e mi fece fare una figuraccia. Non ricordo come la conversazione arrivasse alla combustione, ma “Di cosa sono fatte le ceneri?” se ne uscì. Beh io non lo sapevo e dunque cominciai ad “arrotolarmi”, materiale non bruciato, carbone, legna degradata; assolutamente no.

Sotto lo sguardo severo di Ugo Lepore, che insegnava allora stechiometria. Volevo scomparire.

La cenere è fatta di ossidi di metalli del primo e secondo gruppo (potassio, calcio, magnesio, sodio) e se si aspetta che si raffreddi anche di carbonati dei medesimi a causa del riassorbimento di CO2 dall’atmosfera.

E’ una cosa che non ho dimenticato più.

La cenere della legna ha una tradizione possiamo dire di almeno un milione di anni, visto da quanto tempo il genere Homo sa accendere il fuoco, da prima che noi doppi Sapiens (Homo Sapiens Sapiens) esistessimo (solo 200.000 anni).

Per secoli si è usata per fare la “liscivia”, ossia per lavare i panni: acqua calda sulle ceneri estrae gli ossidi e i carbonati che saponificano i grassi staccandoli dai tessuti; una procedura analoga partendo da grassi animali produce il sapone.

Insomma la cenere è una risorsa; si può usare come componente del concime, ma anche come antilumache: una risorsa molto importante.

Ma data la natura dialettica della chimica, data la natura a due facce o “a due corni“, come avrebbe detto il mio maestro Guido Barone, c’è un aspetto non secondario di almeno alcuni dei componenti della cenere che servono ad estinguere il fuoco; vengono dal fuoco ed estinguono il fuoco.

E infatti i carbonati, le loro soluzioni, le loro polveri o i loro aerosol sono una nota base per la produzione di dispositivi antincendio.

Il più recente e spettacolare di questi dispositivi è stato presentato pochi giorni fa in Corea del Sud dalla Samsung (si avete ragione è quella dei cellulari). La Corea del Sud è soggetta al problema di incendi nelle città densissimamente popolate e dunque la lotta agli incendi è una priorità del governo.

Come vedete si tratta di un vaso da fiori a doppia camera; al centro c’è un vero vasetto dove mettere i fiori, mentre nell’intercapedine chiusa c’è una soluzione di carbonato di potassio; l’involucro esterno è di PVC (e questa è una scelta che non capisco tecnicamente, è un PVC fragile ma se brucia può produrre diossine, ma non è questo il punto adesso). Una volta scagliato sul fuoco il dispositivo si rompe e il carbonato svolge la sua azione estinguente in una frazione di secondo; non è una invenzione originale, esistono già altri prodotti analoghi come questo http://m.id.automaticextinguisher.com/throwing-fire-extinguisher/vase-throwing-fire-extinguisher.html

E sono molto efficaci come potete vedere da questo filmato.

Esistono dispositivi analoghi di tipo statico da posizionare nei luoghi a più alto rischio come le Elide fire balls; ma anche altri similari basati su polveri e non su soluzioni come si vede qui.

D’altronde gli estintori a polvere sono un dispositivo tradizionale e nella composizione delle polveri entrano anche i carbonati, bicarbonato di sodio, fosfato di ammonio e cloruro di potassio a seconda del tipo di combustibile da contrastare.

In genere si sostiene che l’azione estinguente dei carbonati e bicarbonati nasca dal fatto che ad alta temperatura i carbonati cedano il biossido di carbonio e dunque estinguano il fuoco soffocandolo, per spostamento dell’ossigeno. E probabilmente questo meccanismo contribuisce.

Tuttavia questa teoria, che viene presentata anche nei corsi antincendio attuali non mi soddisfa né mi convince, certamente non è completa.

La situazione è molto più complessa.

Come funziona la combustione? In realtà non esiste una teoria semplice della combustione; è una reazione radicalica, che sfrutta la natura chimica dell’ossigeno; e si propaga attraverso una sequenza complessa e numerosa di reazioni radicaliche semplici e ripetute, una catena radicalica.

Come detto altre volte l’ossigeno è una molecola biradicalica che contiene due elettroni spaiati in un orbitale di antilegame e tre coppie di legame; la differenza equivale a due legami covalenti , ma la situazione effettiva è del tutto diversa.

L’ossigeno tripletto è un esempio molto intrigante di molecola biradicalica stabile, i due elettroni spaiati hanno lo stesso spin ½, e la molecola dunque presenta spin totale S=1. (ricordiamo ai lettori meno esperti che lo spin si origina dalle proprietà magnetiche delle particelle, è come se le particelle ruotassero su se stesse divenendo delle piccole calamite).

In questo stato la molecola non è particolarmente reattiva sebbene non sia affatto inerte. L’ossigeno tripletto è paramagnetico, cioè è debolmente attratto dai poli di un magnete. Questa interpretazione è stato uno dei successi della teoria dell’orbitale molecolare.

Lo stato superiore di energia, di norma poco popolato, ma comunque popolato è quello a S=0, denominato ossigeno singoletto; infatti se salta al livello superiore l’ossigeno conterrà adesso entrambi gli elettroni con spin opposto in un unico orbitale di antilegame; la situazione è adesso molto più reattiva, l’ossigeno singoletto, come si chiama, è pronto ad iniziare una catena di reazioni radicaliche.

       Singoletto 1                                           Singoletto   2                           Tripletto

In questo schema vediamo la struttura in termini di orbitali molecolari, a partire dal secondo livello; l’1s è uguale per tutti e non viene mostrato. Dai sei orbitali atomici 2p otteniamo 6 orbitali molecolari, 3 di legame e 3 di antilegame, di cui 4 a simmetria p e 2 a simmetria s.

L’ossigeno tripletto, lo stato fondamentale dell’ossigeno comune, la forma non reattiva o poco reattiva è a destra nello schema; mentre a sinistra vediamo due delle forme che la molecola può avere quando passa al primo stato eccitato; come si vede a destra lo spin è S=1, mentre a sinistra lo spin S=0.

La regola di Hund (in realtà ci sono tre regole, ma questa è la più importante), scoperta da Frederik Hund nel 1925 stabilisce che per una certa configurazione elettronica il termine con l’energia più bassa è quello con la maggiore molteplicità di spin dove la molteplicità è definita come 2S+1 dove S è lo spin totale; nel nostro caso dunque lo stato tripletto è a più bassa energia degli stati singoletti.

In questo stato due elettroni con il medesimo spin occupano due orbitali molecolari di antilegame a simmetria p. Attenzione ad immaginarveli; non potreste usare il classico salsicciotto, quello vale per quelli di legame, quelli di antilegame hanno il grosso della concentrazione “fuori” dalla zona interatomica, in altre parole tendono a tirar via i loro nuclei dal legame. Purtroppo la figura non rende giustizia a questa complessità.

Nei due stati eccitati i due elettroni hanno spin opposti ed occupano il medesimo orbitale oppure al massimo dell’energia due orbitali di antilegame.

Aggiungo per completezza che lo stato eccitato a sinistra, quello intermedio come energia, non è radicalico poichè i due elettroni occupano il medesimo orbitale. Questo gli consentirebbe di reagire come elettrofilo, o come un’acido di Lewis.

Come fanno a passare dallo stato fondamentale a quello eccitato? Qualcuno mi dirà: assorbendo un fotone di opportuna energia; risposta sbagliata. La transizione è proibita perchè lo spin è diverso e dunque la probabilità che il passaggio avvenga in questo modo, in caso di transizioni elettroniche è del tutto trascurabile; la simmetria della funzione d’onda non può cambiare in questo caso.

Per far avvenire la transizione occorre un intermedio che assorba energia dalla radiazione e la trasferisca alla molecola di ossigeno in uno dei modi permessi.

Adesso possiamo tornare alla questione della combustione.

La reazione di combustione è una reazione a catena alla quale partecipano molte diverse specie radicaliche; una reazione a catena comporta che durante la reazione gli intermedi di reazione vengano ricreati dalla reazione stessa ed in questo caso gli intermedi sono radicali.

Il fatto che la combustione richieda una alta energia per iniziare, ossia abbia bisogno di un iniziatore o di un innesco dipende proprio dalla situazione che abbiamo tratteggiato dell’ossigeno; ci vuole l’ossigeno singoletto, ma esso non si produce facilmente e il tripletto domina la scena. Le molecole di combustibile sono di solito a spin nullo, tutti gli atomi sono ben legati e non ci sono elettroni spaiati.

Nelle reazioni chimiche in genere la somma degli spin si conserva; qualcosa come l’equazione scritta qui sotto.

E allora come si fa?

Dato che partiamo da spin interi o nulli dobbiamo ritrovarci con spin interi o nulli; ma se accade così la reazione non sarà a catena oppure dovrà produrre due radicali alla volta (spin semiintero); o ancora dovrà essere, almeno all’inizio, una reazione che introduce due spin semininteri, staccando un atomo dalla molecola.

In genere si pensa che la reazione iniziale sia la “sottrazione” di un atomo di idrogeno da un combustibile da parte della molecola di ossigeno singoletto per dare un radicale idroperossido HOO. ; una volta formatosi questo può formare ulteriori perossidi o radicali idrossilici. Ecco dunque spiegata l’importanza di iniziatori radicalici o dell’innesco in temperatura.

Rispetto a questo processo le molecole a più alto contenuto energetico come i singoletti sono favorite, perché possono disporre di una quota di energia di attivazione più elevata.

Ma ecco anche spiegato allora il ruolo di quelle molecole che possono bloccare i radicali; gli scavenger radicalici che catturano i radicali o ne bloccano la formazione interrompono la catena della reazione e bloccano la combustione; non si tratta solo allora di sviluppare la CO2 nei millisecondi di riscaldamento disponibili, come vorrebbe l’ipotesi dello spostamento dell’ossigeno, ma di bloccare la catena radicalica. L’effetto di spostamento c’è ma non è così importante. Ma sia lo ione potassio che lo ione carbonato sono in grado di formare un radicale con potenti azioni in vari campi, sia biologici che inorganici: K. and CO3.-. Una ampia letteratura ne conferma il ruolo e l’esistenza. L’azione di questi radicali può spiegare bene la efficienza delle soluzioni di carbonato e di altri sali come agenti estinguenti di incendi nel loro stato iniziale. Non è ancora ben spiegato il ruolo della forma aerosol o comunque delle interfacce che si formano usando i vari dispositivi, ma probabilmente anche quello serve a bloccare la formazione della catena reattiva.

Un uso veramente inatteso della cenere: viene dal fuoco ma lo può anche bloccare. Guido Barone sarebbe stato soddisfatto, avrebbe detto la chimica ha due corni, la chimica è dialettica.

Riferimenti.

  1. Laing The three forms of molecular oxygen JCE 66, 6 (1989)

Scaricabile da:

https://www.uni-saarland.de/fileadmin/user_upload/Professoren/fr81_ProfJung/Laing89.pdf

https://www.nist.gov/sites/default/files/documents/el/fire_research/R0501578.pdf

https://www3.nd.edu/~pkamat/wikirad/pdf/spinchem.pdf

https://onlinelibrary.wiley.com/doi/full/10.1002/fam.1088

https://www.ncbi.nlm.nih.gov/pubmed/17505962

https://www.ncbi.nlm.nih.gov/pubmed/8021011

Rispondi

Inserisci i tuoi dati qui sotto o clicca su un'icona per effettuare l'accesso:

Logo WordPress.com

Stai commentando usando il tuo account WordPress.com. Chiudi sessione /  Modifica )

Google photo

Stai commentando usando il tuo account Google. Chiudi sessione /  Modifica )

Foto Twitter

Stai commentando usando il tuo account Twitter. Chiudi sessione /  Modifica )

Foto di Facebook

Stai commentando usando il tuo account Facebook. Chiudi sessione /  Modifica )

Connessione a %s...

This site uses Akismet to reduce spam. Learn how your comment data is processed.