Il poliedrico Primo Levi

Mauro Icardi

Renato Portesi, collaboratore di Primo Levi nella fabbrica di vernici Siva di Settimo Torinese, nel saggio di chiusura del volume “Cucire parole, cucire molecole”, edito dall’Accademia delle Scienze di Torino, ricorda Levi con queste parole. “Era un chimico che amava dello stesso amore la scienza pura, la ricerca sofisticata e le operazioni manuali, che non faceva differenza di rango tra l’attività del ricercatore e quella del tecnico.   Il suo contributo alla crescita dell’azienda è stato decisivo: per le conoscenze scientifiche e tecniche che ha messo a disposizione, per il rigore logico con il quale insegnava ad affrontare i problemi e per aver contribuito a formare collaboratori eclettici, capaci di passare da una disciplina all’altra con notevole facilità”.

Questo ritratto di Primo Levi nella veste di chimico, e in seguito di direttore tecnico di un’azienda di produzione di vernici, mi ha molto colpito. Perché in primo luogo conferma il valore dell’uomo e del tecnico. E anche il suo eclettismo entusiastico e contagioso. Levi non amava essere definito scienziato, preferendo la definizione di tecnico. A mio parere, leggendo non solo le sue opere, ma anche le biografie e i saggi scritti da moltissimi altri autori (Belpoliti e Jesurum tra i tanti), ne viene fuori invece la figura di uno scienziato umanista. Dedito alla gestione della quotidianità aziendale, ma capace di idee innovative e originali. E non ultima dote quella di essere un uomo capace di trasmettere il suo entusiasmo ai collaboratori. Strano che Levi non amasse essere definito scienziato. Il suo saggio intitolato “L’asimmetria e la vita” usato poi per dare il titolo ad un volume uscito postumo nel 2002, è un esempio perfetto della sua indubbia capacità di divulgazione scientifica. E non si può dimenticare che la prestigiosa Royal Institution inglese ha sanzionato nel 2006 la vittoria de “Il sistema periodico” come miglior libro di divulgazione scientifica di tutti i tempi. Giova ricordare tra i libri concorrenti vi erano tra gli altri “L’anello di Re Salomone” di Konrad Lorenz, e “Il gene egoista” di Richard Dawkins.

Ma l’autore torinese rimane un esempio di poliedricità. Perché in lui si possono riscontrare diverse anime, che vanno anche oltre a quella duplice del centauro, come amava definirsi. Non solo la dualità chimico-scrittore. C’è un Levi razionalista. Il Levi che definisce il suo stile di scrittore redigendo i rapporti tecnici di fabbrica, oppure descrivendo con lucida memoria, e rigore scientifico e documentale, la precaria situazione igienico –sanitaria del Lager, nel rapporto medico su Auschwitz scritto insieme a Leonardo De Benedetti.

C’è un Levi naturalista che osserva fenomeni naturali o curiosi, e li descrive con il suo consueto stile letterario, essenziale, chiaro e mai ridondante. Questo paradossalmente nel suo libro meno venduto e meno conosciuto, ma che rappresenta a mio parere l’appendice o una sorta di continuazione ideale del “Sistema periodico”, cioè “L’altrui mestiere”.

Libro che meriterebbe decisamente una riscoperta ed una rilettura.

C’è poi il Levi tecnico, il Levi che passa il tempo a risolvere problemi pratici, piccoli intoppi quotidiani del proprio lavoro. E lo ricorda spesso con una vena di malinconia. Il Levi che si districa tra il Nichel da estrarre nella miniera poco distante da Torino, dove è costretto a vivere da apolide, fino al Levi che imparerà sul campo il mestiere di far vernici subito dopo l’esperienza del Lager, e quella del picaresco ed avventuroso ritorno in Italia narrato ne “La tregua”.

Queste pagine di Levi, sono quelle che personalmente riescono sempre a farmi gioire e sorridere. Perché quello che lo scrittore narra e descrive, è patrimonio comune di molti. Piccole vittorie, grane da risolvere in ambito lavorativo. E soprattutto un’atmosfera che si comprende pienamente quando si è stati in un laboratorio chimico, o nei reparti di un’azienda. Levi ammetteva di essere legato ad una pratica di laboratorio di analisi che è riduttivo e ingiusto definire anacronistica, cioè quella dell’analisi sistematica, confessando di preferirla a quella strumentale, di esservi certamente molto legato. Quel metodo di analisi e di lavoro in laboratorio viene narrato nel “Sistema periodico”, e ne è una componente importante. Costituisce la struttura del libro, e dello stile narrativo. Intrecciata ai ricordi legati alla sua esperienza di ebreo italiano, prima discriminato, e successivamente precipitato nell’”anus mundi” del Lager.

Quest’anno ricorrono due anniversari. Che in qualche modo si intrecciano. Il primo è certamente quello del centenario della nascita di Levi. Il secondo è quello dello sbarco sulla Luna, di cui ricorre il cinquantesimo anniversario, e su cui Levi scrisse un articolo intitolato “ La luna e noi”.

Levi con un’intuizione quasi profetica percepiva il crescente disincanto che già permeava di la società italiana. Quasi una profezia di questi nostri tempi. Desiderava il ritorno della capacità di meravigliarsi

E questo brano dove lo scrittore mostra il suo entusiasmo per l’impresa degli astronauti che per primi hanno toccato il suolo lunare, diventa un pezzo di rara bellezza.

Noi molti, noi pubblico, siamo ormai assuefatti, come bambini viziati: il rapido susseguirsi dei portenti spaziali sta spegnendo in noi la facoltà di meravigliarci, che pure è propria dell’uomo, indispensabile per sentirci vivi.

La poliedricità, la grandezza di Primo Levi si possono cogliere nella loro interezza anche in queste poche righe. E ulteriori studi sulla vita e l’opera dello scrittore potranno darci altre opportunità per riscoprire questa facoltà dimenticata. Oltre al piacere di leggere e rileggere le pagine delle sue opere.

Elementi della tavola periodica, Oro, Au. 1 parte.

Rinaldo Cervellati

 

“All’idea di quel metallo portentoso onnipossente

un vulcano la mia mente incomincia a diventar…”

(da: Il barbiere di Siviglia, di Gioacchino Rossini)   

Forse per il suo colore giallo brillante, forse perché è uno dei pochi metalli che si trova libero in natura o per la sua inalterabilità, l’oro ha sollecitato, nel bene e nel male, tutte le fantasie umane fin dalla preistoria.

È l’elemento n 79 della Tavola periodica, simbolo Au (dal latino aurum[1]), raro ma non il più raro essendo la sua abbondanza nella crosta terrestre mediamente 0,03 g/tonnellata e negli oceani circa 1,3 mg/tonnellata acqua marina.

Un poco di storia

In inglese oro si traduce gold, come pure in tedesco, etimologicamente affine a parole derivate dal proto-germanico (gulþą) e dal proto-indoeuropeo (ǵʰelh₃- ) che significano brillante, giallo.

Sembra proprio che l’oro sia stato il primo metallo utilizzato dall’uomo, infatti piccole quantità di oro naturale sono state trovate in grotte spagnole utilizzate durante il tardo Paleolitico, 40.000 a.C. ca. Manufatti d’oro fecero la loro prima apparizione all’inizio del periodo pre-dinastico in Egitto, fine quinto- inizio quarto millennio a.C., e la fusione fu sviluppata nel corso del IV millennio.

Monile egizio in oro e pietre preziose

Manufatti d’oro compaiono in Mesopotamia all’inizio del IV millennio, come pure nei Balcani. Dal 1990 gli archeologi hanno trovano manufatti d’oro nelle necropoli ipogee di Nahal Qana in Palestina, datati IV millennio a.C. Manufatti d’oro come copricapo e dischi apparvero nell’Europa centrale dall’età del bronzo, II millennio a.C.

La più antica mappa conosciuta di una miniera d’oro fu disegnata durante la XIX dinastia dell’antico Egitto (1320-1200 a.C.), mentre il primo riferimento scritto all’oro fu registrato nella dodicesima dinastia verso il 1900 a.C.

Mappa egizia

I geroglifici risalenti al 2600 a.C. descrivono l’oro come molto abbondante in Egitto. In Egitto e in particolare nella regione della Nubia (dall’antico egizio Nwb, che significa appunto oro) vi erano molte miniere d’oro e gli egizi possedevano la tecnologia per estrarlo e lavorarlo, tanto che la Nubia divenne un’importante area di produzione aurifera per gran parte della storia successiva. La mappa dei papiri conservata al Museo Egizio di Torino mostra il piano di una miniera d’oro in Nubia, insieme a indicazioni sulla geologia del luogo.

L’oro è menzionato frequentemente nell’Antico Testamento, dalla storia del vitello d’oro a quella dell’altare d’oro. Nel Nuovo Testamento è incluso nei doni dei magi a Gesù; il libro dell’Apocalisse descrive la città di Gerusalemme come se avesse strade “fatte di oro puro, chiare come cristallo”.

Lo sfruttamento dell’oro nell’angolo sud-est del Mar Nero pare risalga al tempo di Re Mida, e fu importante per datare quello che probabilmente è stato il primo conio in oro, avvenuto in Lydia, regione dell’Asia minore, attorno al 610 a.C.

Nella metallurgia romana furono sviluppati nuovi metodi per estrarre oro su larga scala, in particolare in Spagna dal 25 a.C. e in Dacia (attuali Romania e Moldavia) a partire dal 106 d.C.

Moneta in oro di Adriano 125-128 d.C.

Una delle più grandi miniere era a Las Medulas a León, dove sette lunghi acquedotti consentivano di isolare la maggior parte di un grande deposito alluvionale. I vari metodi usati sono ben descritti da Plinio il Vecchio nella sua enciclopedia Naturalis Historia, scritta verso la fine del I secolo d.C.

Uno degli obiettivi principali degli alchimisti medievali era produrre oro da altre sostanze, come il piombo, presumibilmente dall’interazione con una sostanza mitica chiamata pietra filosofale. Sebbene non siano mai riusciti in questo tentativo[2], gli alchimisti hanno perfezionato alcuni procedimenti come ad es. la calcinazione, la distillazione e la sublimazione, poi divenute di uso comune in chimica. Il simbolo alchemico per l’oro era il cerchio con un punto al centro, che era anche il simbolo astrologico e l’antico carattere cinese per il Sole.

Simbolo alchemico per l’oro

L’esplorazione europea delle Americhe (dal 1492) è incentivata dai resoconti dei primi esploratori circa la gran quantità di gioielli d’oro indossati dalle popolazioni native in America Centrale, Perù e Colombia.

Nel XIX secolo fu scoperta una serie di bacini auriferi in Nord America, soprattutto in California, Colorado, Black Hills e Klondike (Alaska).

Anche se dal punto di vista geologico l’oro nell’antichità era facile da ottenere, il 75% dell’oro prodotto è stato estratto dopo il 1910.

Estrazione e raffinamento

A causa della sua notevole inalterabilità (elevata inerzia chimica) l’oro si trova principalmente allo stato nativo o legato ad altri metalli (argento e rame). Spesso si presenta in forma di granuli e pagliuzze, a volte si trovano anche agglomerati piuttosto grossi, detti pepite. I granelli appaiono inclusi in minerali o sulle superfici di separazione tra cristalli di minerali. Si trova anche nei depositi alluvionali sul fondo dei fiumi.

Pepita d’oro (a sinistra), scaglie d’oro alluvionale (a destra)

L’oro si trova anche associato al quarzo, spesso in filoni, e a solfuri minerali (pirite, calcopirite, galena, arsenopirite).

Filone d’oro in quarzo

Fino dal 1880 il Sudafrica è stato la fonte di circa due terzi dell’oro estratto nel mondo. La città di Johannesburg è stata costruita alla sommità di uno dei più grandi giacimenti mondiali. Tuttavia, dal 2007, la posizione di predominio del Sudafrica è stata superata dalla Cina, la cui produzione nel 2008 è giunta fino a 260 tonnellate di oro, con un incremento del 59% dal 2001. Tra gli altri maggiori produttori figurano gli Stati Uniti (principalmente in Alaska, in Dakota e in Nevada), l’Australia occidentale, il Perù e la Russia.

La seguente mappa mostra la distribuzione mondiale dell’oro.

Mappa della distribuzione mondiale di oro

In Italia l’oro si trova in quantità ponderabili in alcuni fiumi (Po, Ticino). All’interno del Monte Rosa si trova un giacimento più ricco di quelli attualmente presenti in Sudafrica. Tuttavia, a causa di problemi ambientali, di sicurezza e di costi, tale oro non è sfruttato.

La quantità totale di oro presente negli oceani è tutt’altro che trascurabile, ma la bassissima concentrazione rende per il momento antieconomica l’estrazione dall’acqua marina.

L’oro si estrae quindi dalle miniere e, in misura minore, dai depositi alluvionali.

Dopo averlo estratto, l’oro ha bisogno di essere raffinato per aumentarne la purezza. Il metodo più utilizzato è quello ideato e realizzato da Francis Bowyer Miller[3] che lo brevettò nel 1867.

Il processo Miller è un procedimento chimico su scala industriale utilizzato per raffinare l’oro a un grado di purezza del 99,95%. Consiste nell’insufflare una corrente di gas cloro puro sopra e attraverso un crogiolo contenente l’oro fuso da purificare. Poiché quasi tutte le impurezze metalliche degli altri elementi formano cloruri prima dell’oro, possono essere rimosse essendo questi sali insolubili nel metallo fuso. L’oro risultante è puro al 99,95%.

Quando si rende necessaria una purezza ancora maggiore viene utilizzato il metodo Wohlwill[4] che consiste nell’elettrolisi di una soluzione di acido cloroaurico. L’oro che si deposita sul catodo raggiunge una purezza del 99,99%.

A livello mondiale, l’oro prodotto è impiegato per circa il 50% in gioielleria, il 40% in investimenti e il 10% nell’industria.

Dal 1998 l’Italia è il maggiore trasformatore di oro al mondo, con una media di 450-500 tonnellate lavorate ogni anno.

Caratteristiche chimico-fisiche

L’oro è il metallo più duttile e malleabile: un grammo d’oro può essere battuto in lamine di area pari a un metro quadrato. Questi sottilissimi fogli d’oro puro sono usati per decorare cornici di quadri, specchi, ecc. È un metallo tenero e per conferirgli una maggiore resistenza meccanica è lavorato in lega con altri metalli.

L’oro non è intaccato né dall’aria né dall’umidità né dalla maggior parte dei reagenti chimici. Non è solubile negli acidi forti (cloridrico, nitrico e solforico) e negli alcali caustici, invece può essere ossidato dall’acqua regia (una miscela di acido nitrico e cloridrico in rapporto 1:3) o con soluzioni acquose contenenti cianuro di sodio o potassio in presenza di ossigeno o perossido di idrogeno. Nell’acqua regia forma l’acido tetracloroaurico (HAuCl4). A contatto con il mercurio si scioglie in esso formando una lega detta amalgama.

L’oro si lega con molti altri metalli: le leghe col rame sono rossastre, con il ferro verdi, con l’alluminio violacee, col platino bianche, col bismuto e l’argento nerastre.

Gli stati di ossidazione più frequenti dell’oro sono +1 e +3. Gli ioni dell’oro sono facilmente ridotti per aggiunta di qualsiasi altro metallo. Il metallo aggiunto si ossida e si scioglie facendo precipitare l’oro metallico.

È un eccellente conduttore di elettricità, il migliore tra i metalli dopo l’argento e il rame.

Uso nella monetazione

L’oro è stato ampiamente usato in tutto il mondo come denaro sia per rendere efficienti gli scambi sia per immagazzinare ricchezza. Ai fini degli scambi, le zecche producevano monete e lingotti d’oro standardizzati in peso e purezza.

Monete (a sinistra) e lingotti (a destra)

Le prime monete conosciute contenenti oro furono coniate in Asia Minore, attorno al 600 a.C.

La moneta talento d’oro in uso durante l’epoca greca pesava tra 8,42 e 8,75 grammi.

Dopo una iniziale preferenza all’uso dell’argento, le economie europee ristabilirono la coniazione dell’oro come moneta durante il tredicesimo e il quattordicesimo secolo.

I certificati di possesso e le valute cartacee (convertibili in monete d’oro presso la banca emittente) si aggiunsero alle monete circolanti in oro nella maggior parte delle economie industriali del diciannovesimo secolo. Durante la prima guerra mondiale, le nazioni belligeranti gonfiarono le loro valute cartacee per finanziare lo sforzo bellico. Dopo la guerra, i paesi vittoriosi, in particolare la Gran Bretagna, ripristinarono gradualmente la convertibilità dell’oro, e i flussi internazionali di oro tramite cambiali rimasero sotto embargo; le transazioni internazionali venivano effettuate esclusivamente attraverso scambi bilaterali.

Nel secondo dopoguerra l’oro fu sostituito da un sistema di valute nominalmente convertibili legate da tassi di cambio fissi secondo il sistema di Bretton Woods[5]. Nel 1971 gli Stati Uniti rifiutarono di riscattare i propri dollari in oro pertanto la convertibilità diretta delle monete d’oro fu abbandonata da quasi tutti i governi mondiali. La Svizzera è stata l’ultima nazione a legare la sua moneta all’oro; sostenne il 40% del suo valore fino a quando gli svizzeri non aderirono al Fondo monetario internazionale nel 1999.

Le banche centrali continuano a mantenere una parte delle loro riserve liquide in oro. Le riserve auree mondiali e la loro negoziazione sono diventate una piccola parte di tutti i mercati, il tasso di cambio fisso è stato sostituito da prezzi variabili. Sebbene lo stock d’oro cresca solo dell’1%-2% all’anno, una lievissima quantità del metallo viene irrimediabilmente persa.

La percentuale di oro (finezza) nelle leghe è misurata dal carato[6] (k). L’oro puro (commercialmente chiamato oro zecchino) è designato a 24 carati (24k). Le monete d’oro inglesi destinate alla circolazione dal 1526 agli anni ’30 del secolo scorso erano tipicamente costituite da una lega standard di 22k denominata corona.

Sebbene i prezzi di alcuni metalli del gruppo del platino siano molto più alti, l’oro è ancora considerato il più desiderabile dei metalli preziosi.

Molti detentori di oro lo conservano sotto forma di lingotti o di monete come bene rifugio contro l’inflazione o le crisi economiche, sebbene la sua efficacia in quanto tale sia stata messa in dubbio. Le moderne monete di metallo prezioso per scopi di investimento o di collezione non richiedono buone proprietà di usura meccanica; sono in genere oro fino a 24k, sebbene l’American Gold Eagle e le sovrane britanniche continuino ad essere coniati in metallo 22k (0.92) come da tradizione..

Sterlina in oro 22k

(continua)

[1] Secondo la simbologia introdotta da J. J. Berzelius nel 1814, tuttora in uso.

[2] La trasmutazione degli elementi chimici è divenuta possibile nel XX secolo tramite la fisica nucleare. La prima sintesi dell’oro fu effettuata dal fisico giapponese Hantaro Nagaoka nel 1924, che sintetizzò l’oro bombardando il mercurio con neutroni. Un gruppo di fisici americani condusse lo stesso esperimento nel 1941, ottenendo lo stesso risultato e dimostrando che gli isotopi d’oro prodotti in questo modo erano tutti radioattivi. L’oro può attualmente essere prodotto in un reattore nucleare mediante irradiazione neutronica di platino o mercurio.

[3] Francis Bowyer Miller (1828-1887), inglese, saggiatore di metalli, artista e fotografo. Il suo maggior successo scientifico è stato lo sviluppo di un processo di raffinazione e tempra dell’oro che porta il suo nome. Brevettò questo processo a Londra nel 1867. Dodici mesi dopo, l’articolo che descriveva il processo fu presentato alla Chemical Society di Londra. Poco dopo il suo metodo fu applicato con successo dalla Zecca di Sydney e dalla Bank of New Zealand ad Auckland, in Nuova Zelanda.

[4] Wolf Emil Wohlwill (1835 –1912), ingegnere elettrochimico tedesco-ebraico ha inventato il processo di purificazione dell’oro che porta il suo nome nel 1874.

[5] Il sistema di Bretton Woods stabilì le regole per le relazioni commerciali e finanziarie tra Stati Uniti, Canada, Paesi dell’Europa occidentale, Australia e infine Giappone dopo gli accordi del 1944. Fu il primo esempio di una gestione pienamente negoziata allo scopo di governare le relazioni monetarie tra stati indipendenti.

[6] Il carato è principalmente utilizzato in oreficeria e metallurgia sia come unità di misura della massa di materiali preziosi, sia come indicatore di purezza delle leghe auree. Il suo nome deriva dai semi di carruba che pesano tutti circa 200 mg. Nel 1907 la IV Conférence générale des poids et mesures adottò come valore del carato (detto carato metrico) una unità di massa pari esattamente a 200 mg (0,2).

 

Elementi della tavola periodica: Ferro, Fe. 1. La biogeochimica del ferro.

Claudio Della Volpe

The world is moral still you know
and Nature’s wheels do grind

Put ferric P into the sea
and a rose someday you’ll find

Cycle of P, di R.M. Garrels

I colleghi mi scuseranno se torno sul ferro, sul quale ci sono stati già parecchi post qui, qui e qui, di cui uno molto recente, ma l’importanza di questo elemento non può essere sottovalutata in nessun contesto; solo che presenterò il mio punto di vista rovesciando l’approccio tradizionale: prima la biogeochimica e poi l’industria siderurgica. Cosa come vedremo ampiamente giustificata.

Il ferro è l’elemento metallico più abbondante del pianeta Terra, ma la sua abbondanza decresce dal centro verso la periferia; infatti mentre in totale l’abbondanza è del 16%, quella della sola crosta è del 4.75. Nella crosta viene dunque superato dall’Alluminio e dal Calcio. Nel nucleo invece l’abbondanza raggiunge il 20% o superiore.

Si tratta di un elemento fondamentale nell’Universo, il più pesante prodotto dalla nucleosintesi stellare delle stelle massicce e si ipotizza che l’Universo nel futuro sarà fatto di ferro; queste due cose discendono dal fatto che l’isotopo 56 del ferro è il nucleo con la maggiore energia di legame, dunque il più stabile.

Ne consegue che la prima riflessione da fare è che il ferro che troviamo sulla Terra o altrove è già stato nel cuore di qualche stella, è un elemento che ne ha viste di caldissime e grandissime un vero elemento del nucleo, in ogni senso.

Il nome del ferro ha una origine complessa; la parola ferro è una parola tardolatina medioevale e viene probabilmente da fer, portare; o da una radice indoeuropea comune phars, essere rigido, mentre la parola siderurgia viene direttamente dal greco σιδηρο-, forma compositiva di σίδηρος «ferro», che ci riporta al fatto che il primo ferro conosciuto dagli uomini viene dal cielo, dalle meteoriti che cadevano dal cielo ed era ritenuto un metallo degli dei.

Il che, per tutto quel che abbiamo detto, è sorprendentemente corretto.

Come raccontato altrove, il ferro lo usiamo da almeno 5000 anni, ma la capacità di estrarlo dai minerali la abbiamo acquisita con lunghe prove e la possediamo da soli 3500 anni circa; quando imparammo a farlo, data la capacità del ferro di essere fra i più duri e resilienti materiali che avevamo a disposizione cambiò la vita di tutti e la loro organizzazione sociale. L’età del ferro è stata certo un’eta di rivoluzioni e scontri, dal 2000 aC in poi; al principio del I millennio aC il ferro era entrato ormai nella cultura e nell’uso comuni, sbaragliando il bronzo e le armi costruite con esso.

Le armi di Omero, le armi degli Achei dagli occhi cerulei, erano di bronzo, (anche se le tattiche militari sembrano quelle più tarde dell’età del ferro) ma quelle dei Romani erano di ferro. Questo è un argomento che meriterebbe più spazio, ma lo riprenderò nella seconda parte del post.

Si dice raramente che il Ferro presenta quattro allotropi: α, β, γ e δ, per cui il suo diagramma di fase è il seguente:

 il ferro alfa esiste a temperature inferiori a 768 °C; magnetico.
il ferro beta esiste a temperature comprese tra 768/770 °C e 910 °C; presenta una perdita delle caratteristiche magnetiche e alta duttilità.
il ferro gamma esiste a temperature comprese tra 910 °C e 1 394 °C; scioglie carbonio.
il ferro delta esiste a temperature comprese tra 1 394 °C e 1 538 °C.

Il ferro ha quattro isotopi stabili il già nominato 56, il più abbondante, 54, 57, 58. Presente in genere come ossido nella crosta, può avere comunque numeri di ossidazione +2, +3, +4, +6.

Dal ciclo globale rappresentato qui sopra , estratto sempre dal classico lavoro di Rauch e Pacyna, più volte citato sul blog, si evince che il ferro è principalmente un metallo presente in Natura e i cui flussi e depositi naturali sono dominanti su quelli umani; dunque la mia scelta di privilegiare il ciclo biogeochimico è ragionevole. Comunque questi dati sono del 2000 e vedremo nella seconda parte del post che il flusso del ferro nella società umana è raddoppiato e che dunque oggi il flusso indicato fra Production e Fabrication è passato da 850 a 1700 milioni di ton, mentre tutti gli altri flussi in figura sono rimasti costanti. Notate come lo stock umano è simile come dimensioni a quello presente in tutte le acque dolci, decine di miliardi di ton e che questo a sua volta è maggiore di quello presente nell’oceano.

Data la complessità del ciclo lo ripresento in modo più qualitativo in quest’altra immagine tratta da Wikipedia e nella quale risulta chiaro che il ferro è presente sia a livello liquido e solido che in atmosfera, non certo perchè esistano composti gassosi del ferro, ma perchè il ferro domina la composizione della polvere e delle ceneri vulcaniche. Tramite questa forma il ferro penetra nell’Oceano. Tuttavia data la condizione ossidante dell’oceano il ferro come tale è uno dei metalli meno concentrati, al contrario dell’alluminio. Una volta ossidato infatti esso formando ossidi ed idrossidi precipita nello stock del fondo.

La maggioranza dei minerali di ferro, dei depositi di ferro sono ossidi e vengono dall’ultima tragedia biologica veramente grande, ossia l’invasione dell’ossigeno.

https://geology.com/rocks/iron-ore.shtml

Ematite di ferro oolitica.

Quasi tutti i maggiori depositi di ferro sono in rocce che si formarono oltre 1.8 miliardi di anni fa. A quell’epoca gli oceani della Terra contenevano ferro disciolto in abbondanza e quasi niente ossigeno. I depositi di ferro si iniziarono a formare quando i primi organismi capaci di fotosintesi cominciarono a rilasciare ossigeno nell’acqua. Questo ossigeno immediatamente si combinò con il ferro ivi disciolto in abbondanza per produrre ematite o magnetite. Questi minerali si depositarono sul fondo oceanico in grande quantità formando quelle che sono chiamate “formazioni di ferro a bande”. Le rocce con le bande sono costituite da depositi di minerali di ferro depositato in bande alternate con silice e a volte materiali organici trasformati in petrolio o gas. Le bande sono probabilmente il risultato dell’attività stagionale degli organismi viventi.

Il ferro è rimasto un elemento chiave per la crescita e lo sviluppo degli organismi viventi, ma la sua concentrazione oceanica è grandemente diminuita; in questo senso si parla di micronutriente e di elemento limitante; questo concetto fu proposto per la prima volta da Joseph Hart negli anni 30 del secolo scorso; egli notò che ci sono ampie zone marine in cui la vita è assente anche se i macronutrienti sono presenti e ne dedusse che mancava qualcosa (si tratta delle cosiddette zone HNLC, ossia High Nutrient-Low Chlorophyll). Il discorso fu ripreso negli anni 80 e poi riapprofondito usando tecniche satellitari.

Oggi si pensa che il micronutriente mancante sia proprio il ferro, tanto che si sono fatti vari esperimenti per dimostrare che aggiungendo ferro all’oceano in forma di microparticelle, come quelle che si depositerebbero naturalmente da eruzioni vulcaniche, si ha uno sviluppo esplosivo di organismi viventi fotosintetici con potenziale enorme assorbimento di biossido di carbonio. Ovviamente l’idea viene vista anche come una possibile soluzione al problema del global warming, ma in realtà la cosa non è ancora del tutto chiara, proprio perchè i cicli biogeochimici non sono ancora ben compresi in tutta la loro eccezionale complessità, per cui dati i molteplici effetti di retroazione possibili, questa rimane una ipotesi, sia pure robusta. (https://www.niwa.co.nz/iron-fertilisation). Recentemente si è ipotizzato che anche altri micronutrienti come lo Zinco siano necessari per lo sviluppo del fitoplancton.

Il ferro arriva nell’oceano dalle ceneri vulcaniche e dalla polvere, dalle acque dei ghiacciai e dalle sorgenti idrotermali lungo i margini delle zolle continentali. Parecchio ferro è in forma complessa, non come ione +2 o +3.

Il ferro è un bioelemento essenziale per la maggior parte delle forme di vita dai batteri ai mammiferi. La sua importanza nasce dall’abilità di mediare il trasferimento di elettroni.

Nello stato ferroso, Fe+2, esso agisce come un donatore di elettroni mentre in quello ferrico, Fe+3, come un accettore. Per questo motivo esso gioca un ruolo vitale nella catalisi delle reazioni enzimatiche che coinvolgano un trasferimento di elettroni, cioè nelle reazioni di ossidoriduzione. Le proteine possono contenere il ferro come parte di diversi cofattori, come per esempio i clusters Fe-S e nei gruppi eme; in queste forme il ferro è coinvolto in un numero incredibile di reazioni essenziali della cellula (pensiamo solo alla nostra emoglobina che ci serve a respirare).

In un certo senso il ferro esemplifica il comportamento contraddittorio e dialettico di molte sostanze nel complesso delle reazioni biologiche; da una parte è essenziale per il motivo che abbiamo appena detto, ma d’altra parte ha la potenzialità di diventare deleterio.

Al pH e alla pressione parziale di ossigeno considerate fisiologiche Fe(II) è facilmente ossidato a Fe(III), che a sua volta si trasforma rapidamente nelle forme polimeriche insolubili di Fe(OH)3.

https://geoweb.princeton.edu/research/geochemistry/research/aqueous-polymers.html

Inoltre, se non appropriatamente chelato a causa della sua azione catalitica nelle reazioni redox ad un elettrone, il ferro gioca un ruolo nella formazione dei radicali ossigeno che costituiscono la causa del danno perossidativo per la cellula.

Dunque gli organismi sono obbligati a risolvere questo paradosso; da una parte mantenere il ferro libero al più basso livello possibile ma dall’altra comunque ad un livello tale da supportare la sintesi adeguata di emoproteine e altre proteine contenenti ferro.

Per fare questo gli organismi viventi hanno sviluppato molecole specializzate per acquisire, trasportare e stoccare il ferro in una forma contemporaneamente solubile ma non tossica. E naturalmente questo traffico del ferro abbisogna di un meccanismo sofisticato di controllo.

Ecco in poche parole raccontato il ruolo del ferro nella biosfera e nell’organismo, prima che nella nostra società, argomento al quale sarà dedicata la seconda parte di questo post.

Riferimenti

Earth’s global Ag, Al, Cr, Cu, Fe, Ni, Pb, and Zn cycles Jason N. Rauch and Jozef M. Pacyna 
 GLOBAL BIOGEOCHEMICAL CYCLES, VOL. 23, GB2001, doi:10.1029/2008GB003376, 2009

http://www.homepages.ed.ac.uk/shs/Climatechange/Carbon%20sequestration/Martin%20iron.htm

https://www.sciencedirect.com/science/article/pii/S0085253815462301

Kidney International

Volume 55, Supplement 69, March 1999, Pages S2-S11

Cellular iron metabolism di Prem Ponka

(continua)

Nuovi pannelli solari ad alto rendimento

Rinaldo Cervellati

 

Ricercatori del MIT (Massachusetts Institute of Technology) hanno recentemente sostenuto che con un particolare accorgimento si possono realizzare celle solari al silicio con un rendimento più alto che quello teorico raggiungibile con quelle attuali.

La notizia è stata data da Katherine Bourzac sul numero del 10 luglio di C&EN newsletter on-line [1].

Le attuali celle solari in silicio (mostrate in figura) hanno un limite teorico di efficienza del 29%.

Il gruppo di ricerca, guidato dal Prof. Marc A. Baldo, direttore del Research Laboratory of Electronics del MIT, ha riportato che celle solari in silicio a strato singolo possono convertire fino al 35% dell’energia solare in energia utile, un aumento notevole rispetto all’attuale limite [2]. L’accorgimento è consistito nel trovare la giusta combinazione di materiali che consentisse di sfruttare un fenomeno previsto circa 40 anni fa.

Prof. Marc A. Baldo (classe1973)

I semiconduttori come il silicio sono ottimi nel convertire alcune, ma non tutte, le lunghezze d’onda della luce in elettricità. La gamma di lunghezze d’onda che un semiconduttore può utilizzare per trasformarla in energia elettrica dipende da una proprietà elettrica intrinseca del materiale, chiamata bandgap[1]. Quando questi materiali assorbono lunghezze d’onda di luce con energia superiore alla loro specifica gamma, questa extraenergia, si perde sotto forma di calore.

Dice Marc Baldo:

Le celle solari potrebbero funzionare in modo più efficiente e convertire più elettricità se si potesse espandere quella gamma di lunghezze d’onda. Ci sono accorgimenti per farlo, ma nessuno di quelli messi in opera finora ha avuto una buona applicazione pratica ed economica. Un approccio è la cella solare tandem, che accumula più celle composte da diversi semiconduttori che si specializzano nell’assorbire una particolare banda dello spettro solare. Questi sono costosi e hanno cablaggi complessi e inefficienze interne. Il nostro gruppo ha cercato invece di trovare un modo per far funzionare meglio una normale cella solare.

Per fare ciò il gruppo ha riflettuto sui fondamenti di ciò che accade in una cella solare. Quando un fotone colpisce una cella solare al silicio eccita una coppia di cariche, un elettrone e un “buco”. Questa coppia di cariche è una quasiparticella chiamata eccitone. Nel silicio gli eccitoni si separano rapidamente quando gli elettroni si uniscono nel flusso di corrente.

Ma in altri materiali, come il tetracene, un semiconduttore organico a quattro anelli, gli eccitoni danno luogo a un fenomeno più esotico. Attraverso un processo chiamato fissione di eccitone, un eccitone con un particolare spin quantico può dividersi in due eccitoni di energia inferiore con spin diversi. Ciascun eccitone figlia possiede la metà dell’energia del genitore.

Struttura del tetracene

Questa fissione di eccitoni potrebbe aiutare a espandere la gamma di lunghezze d’onda che una cella solare al silicio può utilizzare per convertirla in elettricità, poiché il modo in cui il tetracene divide gli eccitoni è in perfetta corrispondenza con le proprietà semiconduttrici del silicio. Gli eccitoni figlie della molecola organica hanno livelli energetici compatibili con la banda di conduzione del silicio. Quindi il tetracene potrebbe assorbire la luce che il silicio non può convertire, eccitarsi e quindi donare quell’energia al silicio sotto forma di eccitoni figlie. Questa donazione permetterebbe al silicio di convertirla in energia elettrica.

Il tetracene come aiuto per migliorare le prestazioni del silicio fu proposto per la prima volta nel 1979 dal chimico David Dexter [3]. Spiega Baldo: a quel tempo, non era chiaro cosa fare con questo: non esisteva la tecnologia per costruire una cella al silicio progettata per questo processo.

Il laboratorio di Baldo ha cercato la soluzione giusta fino dal 2009. Tetracene e silicio possono funzionare solo insieme a un mediatore; la sfida è stata trovare quello giusto. La superficie del silicio è una foresta di legami che deve essere rivestita con uno strato protettivo. Tale protezione, denominata ‘livello di passivazione’, non può essere eliminata. Ma questi strati protettivi in ​​genere interrompono il flusso di cariche tra silicio e tetracene. Baldo dice che il suo gruppo non ha trovato molte indicazioni dalla teoria, quindi hanno dovuto provare un gran numero di combinazioni di materiali prima che arrivassero a quello giusto.

Dopo anni di lavoro, hanno scoperto che un film di afnio ossinitruro[2] di circa 8 Å di spessore (appena sotto un nanometro) passiva il silicio ma lascia passare le cariche attraverso uno strato di tetracene. Ora, il gruppo di Baldo ha dimostrato che questi tre materiali possono accoppiarsi in una cella solare funzionale. Sulla base dei calcoli, i ricercatori hanno stimato che una cella solare contenente tetracene potrebbe avere un limite di efficienza teorica del 35%.

I risultati dei ricercatori del MIT sono così clamorosi che ho chiesto il parere di due esperti del fotovoltaico: il Prof. emerito Vincenzo Balzani, che fa anche parte della redazione di questo blog, e la Prof. Paola Ceroni, del Dipartimento di Chimica dell’Università di Bologna, che ha recentemente partecipato a una Conferenza internazionale di Fotochimica a Boston. Ecco cosa mi hanno detto.

Balzani. Il tema descritto è di grande interesse scientifico, e ha a che fare con la possibilità che un singoletto eccitato si scinda (in inglese: fission) in due tripletti, ciascuno capace di generare un elettrone quando l’eccitazione giunge a un semiconduttore. Di questo fenomeno e della possibilità di usarlo per aumentare l’efficienza delle celle fotovoltaiche se ne parla da molto tempo. È trattato anche nel nostro libro Photochemistry and Photophysics (Balzani, Ceroni, Juris, p. 449-452), in cui vengono discussi i motivi per cui è difficile utilizzare la singlet fission per aumentare l’efficienza delle celle fotovoltaiche. Anzitutto, il singoletto deve avere energia superiore a quella di due tripletti, cosa che accade solo in certi tipi di molecole organiche. Fra i problemi più ardui da risolvere c’é poi la difficoltà di creare un solido in cui le distanze fra i componenti (composto organico e semiconduttore) permetta ai tripletti “figli” di separarsi e trasferire la loro energia al semiconduttore, prima che avvenga la triplet-triplet annihilation o il loro decadimento.  Il sistema più efficiente fino ad allora (2014) era una cella pentacene/PbSe, con efficienza 4,7% (ricordiamo che i  pannelli commerciali al silicio hanno già un’efficienza del 20% per conto loro).

La novità nel lavoro di cui Chem. Eng. News fa un highlight  sembra proprio sia, come giustamente sottolineato da Rinaldo, nell’aver trovato un materiale (hafnium oxynitride) che  “media” fra tetracene e silicio in modo da permettere ai tripletti  del tetracene  di passare la loro energia al semiconduttore. È vero che questo sistema permetterebbe di raggiungere un’efficienza teorica del 35%, rispetto al 29%, sempre teorico, del silicio. Il fatto però è che il silicio, come già ricordato, ha già un’efficienza reale del 20%, mentre in questo nuovo sistema l’efficienza combinata fra scissione del singoletto del tetracene in due tripletti (teoricamente dovrebbe essere 200%) e efficienza di energy transfer al silicio (teoricamente 100%) è 123% . In altre parole, se il fotone assorbito dal tetracene fosse lasciato al silicio il sistema avrebbe efficienza 20%, facendoli assorbire tutti (impossibile) dal tetracene l’efficienza diventerebbe 24,6%. Salvo il fatto che il tetracene ha una soglia maggiore del silicio, per cui bisognerebbe anche calcolare quanto ci si rimette usando solo i fotoni assorbiti dal tetracene.

Insomma, non mi sembra che le parole con cui concludono il riassunto ( the potential of singlet exciton fission to increase the efficiencies of silicon solar cells and reduce the cost of the energy that they generate) siano appropriate: che ci fosse “potenzialmente” la possibilità di aumentare l’efficienza con la singlet fission già si sapeva, quanto alla possibilità di ridurre i costi complicando i pannelli al silicio, che vanno già così bene, mettendoci dentro un altro materiale, mi sembra un wishful thinking, come succede a tutti noi ricercatori, molto innamorati delle nostre idee e dei risultati, non sempre brillanti, a cui portano.

In conclusione: i pannelli fotovoltaici al silicio vanno più che bene così come sono: efficienza reale (su un massimo teorico 29%) di circa 20%, 100 volte maggiore dell’efficienza del processo di fotosintesi clorofilliana; durata 30  anni; niente manutenzione; niente consumo di suolo utile; basso prezzo, sempre in diminuzione; materiali quasi totalmente riciclabili. I pannelli fotovoltaici al silicio sono già un miracolo! Non credo sarà facile creare qualcosa che sia al tempo stesso più efficiente, più robusto e che costi meno. Anche se, mai dire mai …

Ceroni (via Balzani). Ho ritenuto opportuno sottoporre questo commento alla mia collega Paola Ceroni che è a Boston per un congresso di Fotochimica. Mi ha detto che, guarda caso, il giorno prima aveva parlato al congresso Joseph Michl, un esperto proprio sul tema singlet fission che studia da anni. Michl ha sottolineato che la reale applicazione è lontana nel tempo, anche perché il tetracene si degrada molto velocemente sotto luce. Ha concluso la sua conferenza dicendo che negli ultimi dieci anni sono stati fatti notevoli passi avanti nella comprensione di questo fenomeno di singlet fission, ma che, a suo parere, la speranza che questa tecnica possa essere applicata per aumentare le prestazioni dei pannelli fotovoltaici è salita dal 5% di 10 anni fa al … 6% di oggi!

Bibliografia

[1] K. Bourzac, Supercharging the silicon solar cell, https://cen.acs.org/energy/solar-power/Supercharging-silicon-solar-cell/97/web/2019/07?utm_source=NonMember&utm_medium=Newsletter&utm_campaign=CEN

[2] M. Einzinger et al., Sensitization of silicon by singlet exciton fission in tetracene., Nature, 2019, 571, 90-94.

[3] D.L. Dexter, Two Ideas on Energy Transfer Phenomena: Ion-Pair Effects Involving the OH Stretching Mode, and Sensitization of Photovoltaic Cells., Journal of Luminescence, 1979, 18/19, 779-784.

[1] La bandgap o banda proibita di un semiconduttore è l’intervallo di energia interdetto agli elettroni.

[2] L’ossinitruro di afnio è un composto dell’elemento afnio con azoto e ossigeno di composizione chimica variabile: HfOxNy.

Un ricordo di Giorgio Nebbia.

Claudio Della Volpe

Questo post è basato in piccola parte sui miei ricordi ma soprattutto sulla formidabile intervista fatta a Giorgio Nebbia nel 2016 da Luigi Piccioni e riportata qui; dura quasi tre ore e se avete pazienza è molto interessante, quasi un archivio della cultura e della vita italiana del 900 attraverso gli occhi di un protagonista.

Come tutti i lettori sanno Giorgio è stato redattore anche di questo blog, una delle tante attività che ha svolto nel suo quasi-secolo di vita attivissima. Dunque questo breve ricordo gli è dovuto. Se volete cercare gli articoli con i quali ha contribuito al nostro blog basta che mettiate “Nebbia” nella finestrella in alto a destra, ne troverete decine. Giorgio era stato nominato socio onorario della SCI, su mia proposta, prima del 2010.

Giorgio Nebbia nasce a Bologna nell’aprile 1926, da una famiglia che era però metà toscana e in Toscana rimarrà un pezzo di cuore fra Livorno e Massa, dove il padre aveva costruito, a Poveromo, una casetta delle vacanze, in via delle Macchie.

Ma il sogno piccolo borghese della famiglia impiegatizia di Giorgio dura poco, perché la crisi del 29 fa perdere il lavoro al padre; e segue dunque un periodo di ristrettezze che culmina poi durante la guerra con la morte del padre e il ritorno a Bologna, che era la patria della mamma.

Qui si inizia il percorso universitario di Giorgio, nel primissimo dopoguerra; in un primo momento iscritto a ingegneria e studente lavoratore, conosce per caso colui che diventerà suo mentore, Walter Ciusa, allora associato di merceologia a Bologna, che lo assume come collaboratore del suo lavoro accademico. Giorgio aveva conoscenza dell’inglese, disegnava bene e questo lo rende già un buon collaboratore; in questo periodo Giorgio incontra la chimica analitica e si scopre un buon analista; Ciusa più tardi gli consiglia di lasciare ingegneria ed iscriversi a Chimica; Giorgio si iscrive a Chimica a Bari, dove pensava di riuscire a laurearsi prima e infatti si laurea nel 1949. In un articolo del 2011 lui stesso ci racconta il contenuto della tesi di laurea.

Nei primi del Novecento i perfezionamenti dei metodi di analisi chimica consentirono di separare e caratterizzare numerose sostanze che si rivelarono cancerogene. Si trattava in gran parte di idrocarburi aromatici policiclici, contenenti diecine di atomi di carbonio e idrogeno uniti fra loro in “anelli”. La svolta fondamentale si ebbe con le ricerche condotte negli anni trenta del Novecento da James Wilfred Cook (1900-1975) che preparò per sintesi numerosi idrocarburi policiclici ad alto grado di purezza con cui fu possibile riconoscere il vario grado di cancerogenicità di ciascuno. Il più tossico si rivelò appunto il 3,4-benzopirene, generalmente indicato come benzo(a)pirene per distinguerlo dal benzo(e)pirene (4,5-benzopirene) che ha lo stesso numero di atomi di carbonio e idrogeno, ma disposti diversamente. Negli anni 40 fu possibile anche identificare a quali strutture molecolari era maggiormente associata l’attività cancerogena. Per inciso è stato l’argomento della mia tesi di laurea in chimica nel 1949 nell’Università di Bari e di un successivo libro.”

Il libro è Maria Prato e G. Nebbia, “Le sostanze cancerogene”, Bari, Leonardo da Vinci Editore, 1950, 151 pp.

A questo punto quello che lui stesso descrive come un colpo di fortuna; Ciusa diventa ordinario di Merceologia e lo chiama come assistente a Bologna, a soli 5 giorni dalla laurea. Per la prima volta Giorgio ha un vero lavoro pagato dallo Stato, come lui stesso dice orgogliosamente. Questo ruolo di assistente alla cattedra di merceologia Giorgio lo manterrà per dieci anni fino al 1959.

La merceologia nell’idea di Nebbia è “il racconto di come si fanno le cose”, ereditato da un Ciusa che era a sua volta molto interessato alla storia delle merci ed alla loro evoluzione. Nebbia dunque raccoglie insieme l’eredità culturale del mondo chimico ma anche di quello umanistico , una impostazione a cui rimarrà sempre fedele.

In questi anni il grosso della sua attività di ricerca è dedicato ai metodi della chimica analitica e pubblica anche in tedesco.

Nel 1959 viene chiamato a coprire la cattedra di merceologia a Bari.

Giorgio Nebbia, secondo da sinistra a Bari negli anni 60, con alcuni collaboratori ed un distillatore solare sul tetto dell’università.

Questo segna un cambiamento nell’indirizzo delle sue ricerche; quelle che gli erano state rimproverate a volte come le “curiosità” o perfino capricci da Ciusa o da altri, entrano con maggiore peso nella sua attività di ricerca; entrano in gioco, l’energia, l’acqua, l’ambiente; rimane l’interesse per le merci e la loro storia tanto che si sobbarca un corso di Storia delle merci provenienti da paesi asiatici, ma la sensibilità per l’acqua, che dopo tutto è una merce basica, per l’energia che è anche una merce (e che merce!) crescono. Di questo periodo mi fa piacere ricordare un articolo brevissimo con cui corresse un altro breve articolo su Journal Chemical Education , 1969, e che riporto qui sotto integralmente. Si tratta di un argomento affascinante e di grande impatto didattico e culturale: chi è più efficiente la Volkswagen o il colibrì?

Nebbia trova un errore nell’ultimo conticino di Gerlach che ne inverte radicalmente il senso.

Come potete vedere la sua conclusione ha un impatto che oserei definire filosofico; l’”unità termodinamica del mondo”; un concetto che condivido totalmente e che sarebbe utile far condividere ai nostri politici più illustri ed ai loro “esperti” che di solito la termodinamica non se la filano molto.

Giorgio Nebbia fine anni 70, era consigliere comunale a Massa e presidente della Società degli Amici di Ronchi e Poveromo. Erano gli anni in cui partecipò alle mobilitazioni contro l’inquinamento generato dalla Farmoplant.

 

Inizia con gli anni 70 la fase che potremmo definire ambientalista di Nebbia. Gli impegni sui temi dell’acqua, dell’energia, della dissalazione, dei rifiuti si saldano con una visione che di base è cattolica, ma che vira rapidamente verso sinistra.

Dunque di questi anni è l’impegno nella costruzione di associazioni ambientaliste grandi e piccole, di una divulgazione che ha prodotto nel tempo migliaia di articoli che sono conservati con tutto l’archivio dei libri e dati presso la Fondazione Micheletti.

Gli articoli di Giorgio assommano ad oltre 2000; di questi una rapida ricerca su Google Scholar ne fa trovare 450 dei quali articoli di tipo scientifico sono oltre 130. Purtroppo non riuscite a metterli in ordine temporale perchè probabilmente Giorgio non si era mai iscritto a Google Scholar che d’altronde è nato DOPO che lui era andato in pensione; comunque è una lettura utile a scandire la varietà di interessi che si sono susseguiti nel tempo.

Durante gli anni 80 viene eletto due volte in Parlamento per la Sinistra Indipendente prima come deputato nella IX legislatura (1983-87) e poi come senatore nella X (1987-92). Sono gli anni in cui si discute del nucleare e si vota il primo referendum antinucleare (1987) nel quale Giorgio costituisce un punto di riferimento degli antinuclearisti. D’altronde rimarrà tale anche nel corso del secondo referendum , quello del 2011. Quello fu un periodo eccezionale per la chimica italiana ripetto alla politica; erano in parlamento parecchi chimici fra i quali oltre Giorgio vale la pena di ricordare Enzo Tiezzi.

Nel 1995 va in pensione, ma continua la sua attività pubblicistica sia con libri che che sui quotidiani e sulle riviste.

Era stato nominato professore emerito, ed ottenne le lauree honoris causa in scienze economiche e sociali dall’Università del Molise e in economia e commercio dagli atenei di Bari e Foggia.

Personalmente ho conosciuto Giorgio in questa più recente fase della sua vita, perché era iscritto alla lista di discussione sulla merce regina, il petrolio, una lista che era stata messa su da Ugo Bardi quando aveva fondato l’associazione ASPO-Italia, per studiare il picco del petrolio. Non ci siamo mai incontrati di persona ma ci siamo sentiti varie volte; ovviamente non mi era sconosciuto, anzi avevo già letto molte cose scritte da lui fin da studente e mi sentivo un po’ imbarazzato a parlargli così come se fosse uno qualunque.

Giorgio come altri “grandi” che ho conosciuto era di una semplicità disarmante, rispondeva personalmente alle chiamate ed alle mails, non c’era alcun filtro col pubblico.

Aveva scoperto da solo che avevo un mio blog personale, sul quale esponevo le mie idee sullle cose del mondo e ovviamente le nostre idee politiche erano molto consonanti; subito mi propose di conservarne copia; era uno che conservava tutto, faceva copia di tutto; sembra che conservasse anche i biglietti del tram.

Mi battei con successo per farlo nominare socio onorario della SCI e gli proposi di collaborare col nascente blog della SCI; lui aderì con entusiasmo e fece subito varie proposte di successo, come la serie di articoli: Chi gli ha dato il nome? Dedicata a strumenti o dispositivi di laboratorio di cui ricostruì la storia; ed anche un’altra serie di post di successo è stata quella dedicata alla economia circolare; nei quali l’idea di base era che l’economia circolare non è una invenzione recente ma la riscoperta di qualcosa che l’industria chimica ha nel suo DNA.

Era poi una continua risorsa per la ricostruzione della Storia della Chimica nei suoi più disparati aspetti. A partire dalla storia del Parlamento italiano ovviamente e del ruolo che vi avevano avuto chimici come Avogadro e Cannizzaro.

Quando compì 90 anni ebbe una festa par suo, dunque condita di pubblicazioni varie ; la più interessante delle quali è la raccolta di suoi scritti

Un quaderno speciale di Altro900 con scritti di Giorgio si può scaricare da: http://www.fondazionemicheletti.eu/altronovecento/quaderni/4/AltroNovecento-4_Nebbia-Piccioni_Scritti-di-storia-dell-ambiente.pdf

Il testamento di Giorgio:

http://www.fondazionemicheletti.it/nebbia/sm-4014-lettera-dal-2100-2018/

Giorgio ci ha anche lasciato un testamento ed è un testamento particolare, uno scritto che è una sorta di piccolo romanzo di fantascienza ma anche scritto politico, ma anche novella breve ma anche lettera, una lettera dal futuro, la lettera dal 2100 in cui immagina di ricevere una lettera da chi ha vissuto e ormai digerito le gigantesche trasformazioni che stiamo vivendo. Scritta nel 2018 e pubblicata da Pier Paolo Poggio (a cura di), “Comunismo eretico e pensiero critico”, volume V, JacaBook e Fondazione Luigi Micheletti, p. 47-60, ottobre 2018, ve ne accludo qualche brano.

La crisi economica e ambientale dell’inizio del ventesimo secolo è dovuta e esacerbata dalle regole, ormai globalmente adottate, della società capitalistica basata sulla proprietà privata dei mezzi di produzione e sul dogma dell’aumento del possesso e dei consumi dei beni materiali. E’ possibile prevedere — come ci scrivono dall’inizio del XXII secolo — la trasformazione della società attuale in una società postcapitalistica comunitaria in grado di soddisfare, con le risorse naturali esistenti, una popolazione terrestre di dieci miliardi di persone con minore impoverimento delle risorse naturali e con minori inquinamenti e danni ambientali. …….. Nella società comunitaria i bisogni di ciascuna persona vengono soddisfatti con il lavoro a cui ciascuna persona è tenuto, nell’ambito delle sue capacità, nell’agricoltura, nelle industrie e nei servizi….

La inaccettabile differenza fra la ricchezza dei vari paesi, misurata in arbitrarie unità monetarie, che caratterizzava il mondo all’inizio del 2000 ha portato all’attuale revisione delle forme di pagamento delle merci e del lavoro, su scala internazionale, in unità fisiche, legate al consumo di energia, e al numero di ore di lavoro necessarie per ottenere ciascuna merce e servizio. Queste unità sono regolate su scala internazionale da una banca centrale comunitaria……

La transizione ha comportato una grande modifica della struttura dell’agricoltura e delle foreste, la principale fonte degli alimenti e di molti materiali da costruzione….

Ogni persona ogni anno, in media, ha bisogno di alimenti costituiti da circa 300 kg di sostanze nutritive (carboidrati, grassi, proteine animali e vegetali, grassi, eccetera) ottenibili con la produzione di circa 1000 kg/anno, circa 10 miliardi di tonnellate all’anno, di prodotti vegetali e animali. La coltivazione intensiva dei suoli, con forti apporti di concimi e pesticidi, è stata sostituita da coltivazioni di superfici di suolo adatte a fornire principalmente alimenti alle comunità vicine, con la prevalente partecipazione al lavoro dei membri di ciascuna comunità. Venuta meno la proprietà privata dei terreni agricoli si è visto che la superficie disponibile era largamente sufficiente a soddisfare i fabbisogni alimentari mondiali……

L’altra grande materia naturale essenziale per soddisfare i bisogni elementari umani è costituita dall’acqua: sul pianeta Terra, fra oceani e continenti, si trova una riserva, uno stock, di circa 1.400 milioni di chilometri cubi di acqua; la maggior parte è nei mari e negli oceani sotto forma di acqua salina, inutilizzabile dagli esseri umani; solo il 3 per cento di tutta l’acqua del pianeta è presente sotto forma di acqua dolce, priva o povera di sali, e la maggior parte di questa è allo stato solido, come ghiaccio, nei ghiacciai polari e di montagna; resta una frazione (circa 10 milioni di km3) di acqua dolce liquida che si trova nel sottosuolo, nei laghi, nei fiumi……

Una parte di questo fabbisogno è soddisfatto con l’acqua recuperata dal trattamento e depurazione delle acque usate, sia domestiche, sia zootecniche, grazie ai progressi in tali tecniche che permettono di ottenere acqua usabile in agricoltura e in attività non domestiche; si ottengono anche fanghi di depurazione dai quali è possibile ottenere per fermentazione metano usato come combustibile (contabilizzato come energia dalla biomassa)……

Operazioni che erano difficili quando grandi masse di persone abitavano grandi città lontane dalle attività agricole e che ora sono rese possibili della diffusione di piccole comunità urbane integrate nei terreni agricoli…….

Non ci sono dati sui consumi di acqua nelle varie attività industriali, alcune delle quali usano l’acqua soltanto a fini di raffreddamento e la restituiscono nei corpi naturali da cui l’hanno prelevata (fiumi, laghi) nella stessa quantità e soltanto con una più elevata temperatura (inquinamento termico)……

In particolari casi di emergenza acqua dolce viene ricavata anche dal mare con processi di dissalazione che usano elettricità, come i processi di osmosi inversa.

Dopo il cibo e l’acqua il principale bisogno delle società umane è rappresentato dall’energia che è indispensabile, sotto forma di calore e di elettricità, per produrre le merci, consente gli spostamenti, contribuisce alla diffusione delle conoscenze e dell’informazione e permette di difendersi dal freddo…….

Il programma delle nuove comunità è stato basato sul principio di graduale eliminazione del ricorso ai combustibili fossili, il cui uso è limitato alla produzione di alcuni combustibili liquidi e di alcune materie prime industriali in alcune produzioni metallurgiche, e nella chimica, e di contemporanea chiusura di tutte le centrali nucleari……

L’energia necessaria per le attività umane, 600 EJ/anno è principalmente derivata direttamente o indirettamente dal Sole.

Oggi è stato possibile contenere il fabbisogno di energia dei 10 miliardi abitanti del pianeta a 600 GJ/anno, con una disponibilità media di circa 60 GJ/anno.persona (equivalente a circa 18.000 kWh/anno.persona e ad una potenza di circa 2000 watt), e oscillazioni fra 50 e 80 GJ/anno.persona a seconda del clima e delle condizioni produttive. Questo significa che i paesi con più alti consumi e sprechi sono stati costretti a contenere tali consumi agli usi più essenziali, in modo da assicurare ai paesi più poveri una disponibilità di energia sufficiente ad una vita decente.

Una “società a 2000 watt” era stata auspicata già cento anni fa come risposta al pericolo di esaurimento delle riserve di combustibili fossili e alle crescenti emissioni di gas serra nell’atmosfera…….

Ai fini dell’utilizzazione “umana” dell’energia solare va notato subito che l’intensità della radiazione solare è maggiore nei paesi meno abitati; molti dei paesi che un secolo fa erano arretrati, hanno potuto uscire dalla miseria proprio grazie all’uso dell’energia solare; la società comunitaria ha così potuto contribuire a ristabilire una forma di giustizia distributiva energetica fra i diversi paesi della Terra, realizzando la profezia formulata due secoli fa dal professore italiano Giacomo Ciamician, “i paesi tropicali ospiterebbero di nuovo la civiltà che in questo modo tornerebbe ai suoi luoghi di origine“……..

La struttura economica della società comunitaria richiede molti macchinari e oggetti e strumenti che devono essere fabbricati con processi industriali. Questi sono diffusi nel territorio integrati con le attività agricole e le abitazioni; la loro localizzazione è pianificata in modo da ridurre le necessità di trasporto delle materie prime e dei prodotti a grandi distanze e da ridurre il pendolarismo dei lavoratori fra fabbriche e miniere e abitazioni……

Macchine e merci sono prodotte con criteri di standardizzazione che assicurano una lunga durata e limitata manutenzione. I processi industriali richiedono minerali, metalli, materie estratte dalla biomassa, prodotti chimici, e inevitabilmente sono fonti di rifiuti e scorie.

L’abolizione degli eserciti ha portato ad un graduale declino e poi estinzione delle fabbriche di armi ed esplosivi.

Mentre nella società capitalistica l’unico criterio che stava alla base della produzione industriale era la massimizzazione del profitto degli imprenditori, e tale obiettivo era raggiunto spingendo i cittadini ad acquistare sempre nuove merci progettate per una breve durata, tale da assicurare la sostituzione con nuovi modelli, nella società comunitaria la progettazione dei prodotti industriali è basata su una elevata standardizzazione e su una lunga durata di ciascun oggetto…….

Nella società comunitaria odierna la mobilità di persone e merci è assicurata in gran parte da trasporti ferroviari elettrici, con una ristrutturazione delle linee ferroviarie dando priorità alla mobilità richiesta dalle persone che vanno al lavoro e alle scuole.

Oggi è praticamente eliminato il possesso privato di autoveicoli e il trasporto di persone è assicurato dalle comunità sia mediante efficaci mezzi di trasporto collettivo elettrici, sia mediante prestito di autoveicoli di proprietà collettiva per il tempo necessario alla mobilità richiesta……..

Siamo alle soglie del XXII secolo; ci lasciamo alle spalle un secolo di grandi rivoluzionarie transizioni, un mondo a lungo violento, dominato dal potere economico e finanziario, sostenuto da eserciti sempre più potenti e armi sempre più devastanti. L’umanità è stata più volte, nel secolo passato, alle soglie di conflitti fra paesi e popoli che avrebbero potuto spazzare via la vita umana e vasti territori della biosfera, vittima della paura e del sospetto, è stata esposta ad eventi meteorologici che si sono manifestati con tempeste, alluvioni, siccità.

Fino a quando le “grandi paure” hanno spinto a riconoscere che alla radice dei guasti e delle disuguaglianze stava dell’ideologia capitalistica del “di più”, dell’avidità di alcune classi e popoli nei confronti dei beni della natura da accumulare sottraendoli ad altre persone e popoli.

Con fatica abbiamo così realizzato un mondo in cui le unità comunitarie sono state costruite sulla base dell’affinità fra popoli, in cui città diffuse nel territorio sono integrate con attività agricole, in cui l’agricoltura è stata di nuovo riconosciuta come la fonte primaria di lavoro, di cibo e di materie prime, un mondo di popoli solidali e indipendenti, in cui la circolazione di beni e di persone non è più dominata dal denaro, ma dal dritto di ciascuna persona ad una vita dignitosa e decente.

Questo è il sogno è il lascito di Giorgio.

Giorgio, grazie di essere stato con noi; questo augurio che ci fai, a noi che restiamo piace; non ti dimenticheremo; che la terra ti sia lieve!

Bibiliografia essenziale.

http://www.fondazionemicheletti.it/nebbia/

Il Ferro nello spazio

Diego Tesauro

Il ferro, l’elemento numero 26 della tavola periodica, è oggetto di studio per tutte le discipline dello scibile sia umanistiche che scientifiche.

Gioca infatti un ruolo centrale nella storia dell’evoluzione della società umana tanto da caratterizzare un’età millenaria (https://ilblogdellasci.wordpress.com/brevissime/il-ferro-ha-5000-anni/) della preistoria; è perno dell’economia, essendo la metallurgia, ancora oggi nell’era dei nuovi materiali, un importante settore strategico per l’industria manifatturiera.

La sua presenza ed i composti che forma con gli altri elementi della tavola periodica a maggior ragione coinvolgono tutte le discipline scientifiche dalla geologia, alla biologia, all’astronomia.

Questa centralità è sicuramente dovuta, oltre alle sue peculiari proprietà chimico-fisiche, all’abbondanza sulla Terra, costituisce infatti il 16% della massa del nostro pianeta (la maggior parte concentrata nel nucleo), e il 5% della crosta terrestre. Ma la presenza di questo elemento così elevata sulla Terra trova riscontro anche in una notevole abbondanza nello spazio essendo il settimo fra tutti gli elementi della tavola periodica. Come si spiega questa elevata quantità in un universo dove invece, abbondano i nuclei leggeri come l’idrogeno e l’elio?

Innanzitutto occorre ricordare che nei processi di fusione nucleare nei nuclei delle stelle con emissione di energia i nuclei degli atomi più leggeri fondono per generare elementi più pesanti. Le stelle di massa come il Sole o poco maggiore terminano la loro evoluzione generando elementi come il carbonio e l’ossigeno, mentre le stelle di grande massa (dalle 8 masse solari in su) terminano i loro processi di nucleosintesi proprio con il ferro, in particolare con l’isotopo 56. I processi di nucleosintesi, quindi, hanno come elemento terminale il ferro. Il ferro viene successivamente disperso nello spazio dalle esplosioni di supernova con le quali implodono le stelle quando hanno termine i processi di produzione di energia per fusione nucleare, rendendone ubiquitaria la sua presenza.

Nelle stelle, compreso il Sole, viene ritrovato dall’ ”impronta” lasciata nelle righe di assorbimento degli spettri elettromagnetici delle fotosfere. Nel sistema solare è abbondante negli asteroidi chiamati sideriti, oltre che nei pianeti rocciosi come appunto la Terra, Marte e Venere, dove la presenza è stata confermata con la spettroscopia Mössbauer. Più complessa è la possibilità di rilevare il ferro nello spazio interstellare (ISM). Rispetto a quanto previsto dai modelli, la quantità di ferro gassoso è particolarmente bassa. Evidentemente il ferro non si trova allo stato gassoso, ma in clusters o in composti di tipo molecolare. Clusters metallici di Fe di tutte le dimensioni <1 nm e nanoparticelle di dimensioni> 1 nm sono presenti nella polvere interstellare, ma sono stati rilevati in misura inferiore rispetto alle quantità di ferro previste dai modelli. I clusters svolgono una funzione importantissima nello spazio interstellare. Essi infatti tendono a legare atomi e strutture molecolari ricche di elettroni. Questa proprietà potrebbe giocare un ruolo importante nella sintesi di molecole organiche complesse a cominciare dagli idrocarburi policiclici aromatici (IPA) di cui ci siamo occupati In precedente intervento (https://ilblogdellasci.wordpress.com/2018/01/22/gli-idrocarburi-policiclici-aromatici-ipa-nello-spazio-qual-e-la-loro-origine/ ). In laboratorio, i clusters di Ferro sono noti per catalizzare la formazione di idrocarburi aromatici da acetilene (C2H2) a basse pressioni [1], suggerendo che potrebbero fare lo stesso nell’ISM reagendo con l’acetilene e formando catene di carbonio più lunghe. Le catene lunghe di carbonio, in particolare i poliini, (CnH2) per n >10 sono termodinamicamente instabili, e quelli contenenti più di nove carbonio non sono stati osservati nelle regioni di gas circumstellare o interstellare. Come possono allora stabilizzarsi per dar luogo a molecole organiche complesse?

Recentemente le ipotesi avanzate per una loro maggiore stabilità assegnano ai clusters di ferro questa capacità formando dei pseudocarbini Ferro la cui struttura è riportato nella figura [2].

Potrebbero quindi costituire quel anello mancante che possa giustificare il passaggio da catene di atomi di carbonio a molecole organiche complesse che sono state ritrovate nel mezzo interstellare come gli IPA ed il fullerene. Le ipotesi andrebbero suffragate da osservazioni. Un modello teorico, messo punto ultimamente, ha permesso di dimostrare che spettri infrarossi di molecole di poliini legate ai cluster di ferro non risultano modificati sensibilmente, ma cambiati solo nell’intesità. Pertanto il ferro potrebbe nascondersi nei gas circumstellari delle stelle AGB (https://it.wikipedia.org/wiki/Ramo_asintotico_delle_giganti); infatti un singolo atomo di ferro aggiunto a catene contenenti nove atomi di carbonio esaurirebbe l’abbondanza di Ferro in fase gas del 95%.. L’esaurimento del ferro sarebbe maggiore qualora le catene di carbonio fossero più corte o contenessero altri atomi di ferro. Pertanto il ferro sarebbe presente in modo elusivo e giocherebbe un ruolo fondamentale anche nello spazio interstellare per la chimica organica. In questo modo si affiancherebbe a quello già ipotizzato nella chimica pre-biotica, ad esempio nella formazione di molecole organiche come l’acetato e il piruvato a partire dal biossido di carbonio [3] o nel folding e nella catalisi della molecola di RNA nelle fasi primordiali della vita sulla Terra [4].

La Catena di carbonio e idrogeno collegata ad un cluster di Fe13 (gli atomi di ferro sono rappresentati in colore bruno-rossastro, il carbonio in grigio, l’idrogeno in grigio chiaro).

[1] P., Schnabel K. G, Weil, M.P. Irion. Proof of the Catalytic Activity of a Naked Metal Cluster in the Gas Phase Angewandte Chemie International Edition in English 1992, 31, 636-638. https://doi.org/10.1002/anie.199206361

[2] P. Tarakeshwar , P. R. Buseck, F. X. Timmes. On the Structure, Magnetic Properties, and Infrared Spectra of Iron Pseudocarbynes in the Interstellar Medium The Astrophysical Journal 2019, 879(2) (8pp) https://doi.org/10.3847/1538-4357/ab22b7

[3] S.J. Varma, K.B. Muchowska, P. Chatelain, J. Moran Native iron reduces CO2 to intermediates and end-products of the acetyl CoA pathway. Nature Ecology & Evolution 2018, 2, 1019–1024. https://doi.org/10.1038/s41559-018-0542-2

[4] S.S. Athavale, A.S. Petrov, C. Hsiao, D. Watkins, C.D. Prickett, J.J. Gossett, L. Lie, J.C. Bowman, E. O’Neill, C.R. Bernier, N.V. Hud, R.M. Wartell, S.C. Harvey, L.D. Williams. RNA Folding and Catalysis Mediated by Iron (II) PLOS 2012, 7(5) , e38024.https://doi.org/10.1371/journal.pone.0038024

Agricoltura urbana e ambiente delle città.

Luigi Campanella, già Presidente SCI

Il boom dell’agricoltura urbana è uno dei processi in atto nella nostra società moderna. Il Brooklyn Grange di New York è l’orto urbano più grande del mondo con fattorie urbane sui tetti dei palazzi in un ex cantiere navale della marina militare, ma anche in Italia ci sono importanti casi di orto urbano.

Brooklyn Grange, a one acre urban farm on top of industrial 6 story industrial building in the Long Island City neighborhood of Queens.

Da Bologna da considerare la prima città italiana in materia, a Palermo dove terreni coltivabili vengono affittati per allenarsi all’agricoltura biologica; da Venezia dove l’orto urbano è alla base di un progetto di rigenerazione del sito industriale di Marghera, a Torino dove nel quartiere Mirafiori Sud, ex Fiat, si è creato uno spazio per chi voglia dedicarsi all’agricoltura urbana e nell’area industriale del Parco Mennea sono stati messi a dimora 300 alberi,un orto collettivo ed una vigna; da Milano che ha riqualificato gli spazi degli scali ferroviari dismessi fino a Roma.

Quali gli stimoli a questa nuova tendenza?

Innanzitutto il recupero di aree potenzialmente contaminate, ex siti industriali, poi la voglia di verde nelle nostre città, dove questo colore spesso manca, ancora la convinzione che i processi naturali, come la crescita di vegetazione, siano correttivi dell’ambiente inquinato, infine la possibilità di disporre di matrici alimentari preziose e di qualità a portata di mano, a Km zero come oggi si dice, senza cioè i costi e l’inquinamento che il trasporto dai siti di produzione a quelli di consumo comporta. Diffusi ovunque dal centro alla periferia gli orti nascono in zone urbane e periurbane per consentire alle famiglie di dedicarsi ad essi in nome dell ‘autoproduzione e dell’autosufficienza.

https://www.architetturaecosostenibile.it/green-life/curiosita-ecosostenibili/coltivare-citta-orti-urbani-italia-551

Ci sono però anche valutazioni negative rispetto a questo tipo di interventi, prima fra tutte quella che considera l’orto urbano un parassita competitore e predatore dell’ambiente rurale. C’è poi il problema dell’inquinamento urbano che può divenire un pericolo per la qualità delle produzioni da parte di orti urbani. Da qui deriva l’esigenza di scegliere il sito di collocamento dell’orto e soprattutto la sua gestione quanto più bio possibile. Una riflessione riguarda il ruolo dei politici: che non pensino di risolvere con gli orti urbani il problema della qualità dell’aria urbana!

Se è vero che l’attività foto sintetica delle piante in luoghi inquinati migliora l’assorbimento di CO2 e che un albero può ridurre il particolato disperso nell’aria che lo circonda in una percentuale che va dal 7 al 24%, sarebbe però sbagliato demandare agli orti urbani l’intero problema, magari puntando sul fatto che camminare in città attraverso strade e piazze circondate da vegetazione lussureggiante modifichi il nostro umore in meglio, alzando il livello di criticità ed abbassando quello di criticismo.

Depuratore? No, bioparco!

Mauro Icardi

Generalmente le persone che non li conoscono, si fanno spesso idee particolari sugli impianti di depurazione. La più diffusa, come ho avuto modo di scrivere in passato, è quella che al termine del processo di trattamento l’acqua di uscita sia pronta per essere destinata all’uso potabile. Altre persone sono convinte che nei depuratori sia convogliata l’acqua dei fiumi, e non invece come avviene nella realtà quella degli scarichi fognari. Ma c’è una realtà inconsueta e particolare che voglio raccontare. Cioè la coabitazione tra addetti all’impianto, e comunità di animali di vario genere. Che è un aspetto che personalmente trovo molto interessante.

L’impianto dove lavoro si trova in una zona periferica di Varese, e nelle vicinanze vi sono diverse aree boschive. E anche l’area interna dell’impianto è piantumata, cosa che favorisce questo tipo di fenomeno.

Per iniziare partirei dai gabbiani. Nel periodo invernale, generalmente da Febbraio ad Aprile inoltrato, una colonia piuttosto numerosa di gabbiani reali si stabilisce in impianto.

In Italia la specie è sedentaria e nidificante. Uccelli che normalmente possiamo trovare in Sardegna, Sicilia, isole minori e coste dell’Alto Adriatico, dagli anni 70 ha colonizzato i grandi laghi interni, e tra questi il Lago Maggiore che da Varese dista pochi chilometri. Il gabbiano reale si nutre prevalentemente di pesce, ratti, animali morti e scarti dell’alimentazione umana. Da alcuni decenni i gabbiani reali hanno imparato a trovare cibo nelle discariche urbane, ma prelevano i rifiuti anche direttamente dai cassonetti dell’immondizia. Tra le loro prede vi sono anche altri uccelli, come storni e rondoni, che catturano in volo, o che prelevano dai nidi. Nidificano a terra su isolotti e anche su manufatti, in particolare sui tetti in città, dove trovano grandi quantità di cibo e assenza di predatori. Quindi in impianto possono svolgere egregiamente il loro ruolo di “netturbini”. In effetti lo stormo si posiziona quasi sempre nella zona di sedimentazione primaria.

Sopra la nostra testa volteggiano spesso anche diversi esemplari di poiane. Normalmente circa sei esemplari. E nel mese di febbraio vi è un visibile ed evidente affollamento di volatili. Gabbiani e poiane si dividono il territorio e le prede.

Restando in tema ornitologico un nutrito gruppo di rondini staziona invece nella zona della vasca di disinfezione. Occupandosi di liberarci dagli insetti. Svolgono il loro servizio di disinfestazione con molta costanza. Rivederle ogni anno ritornare è per me motivo di gioia.

In impianto ci sono vaste aree di prato. Ed è per questa ragione che per esempio spesso fanno capolino i fagiani. In questa foto un esemplare di femmina.

Non ho rinvenuto né nido né uova, ma l’animale si è trovato a proprio agio. I fagiani, hanno abitudini stanziali e sono soliti vagare per campi, prati e pianure fertili; difficilmente si inoltrano all’interno di foreste.

Per chiudere la parte dedicata ai volatili un altro uccello che vediamo piuttosto frequentemente è l’airone cenerino.

In effetti è possibile oramai vedere esemplari di Airone cenerino anche lungo le autostrade. Soprattutto al nord, lungo i fiumi della Pianura Padana, dove sono concentrate molte delle sue colonie, ma anche tra le risaie del Piemonte e della Lombardia. Il nostro esemplare qui è ritratto nella zona di ricezione delle acque reflue, ma molto spesso si appollaia con aria regale su un albero di pino domestico che è vicino al cancello d’ingresso principale. La nostra esperienza di ornitologi amatoriali ci ha consentito negli anni di recuperare, e di portare nel centro di recupero della fauna selvatica gestito dal WWF nell’oasi di Vanzago, due esemplari di uccelli molto belli e particolari. Uno svasso maggiore, e un albanella minore. Entrambi feriti sono stati recuperati e rimessi in libertà. Cosa che ci ha fatto davvero molto piacere.

Veniamo ora ai conigli selvatici. In impianto sono molto comuni.

Sono come delle mascotte. I colleghi che si occupano della manutenzione esterna, quando sono impegnati nel taglio erba sono sempre molto attenti a non disturbare gli animali, nell’epoca in cui ci sono le nidiate.

La precauzione è di fatto inutile. Il coniglio selvatico ha un alto tasso di natalità, anche se nel nostro caso non ne siamo invasi. Rinveniamo spesso le entrate dei cunicoli che le bestiole scavano. A volte questi cunicoli sono sistemi estesi e complessi, ma nel nostro caso la coabitazione è serena. Per altro i conigli aiutano la gestione del taglio erba! Ne possono trovare in abbondanza.

Nella foto si intravede la coda bianca dell’esemplare. Una conferma del fatto che si tratti di coniglio selvatico autoctono. E pur vero che in provincia di Varese, come del resto in tutta Italia, questa specie competa con quella della minilepre (silvilago orientale) di origine Nordamericana. La minilepre venne introdotta a scopo venatorio. E come molte altre specie alloctone può dare luogo a pesanti squilibri nell’equilibrio ecologico locale.

A proposito di specie alloctone, presso un impianto di depurazione più piccolo, situato in prossimità del Lago di Varese ho avuto un incontro con il famigerato Gambero della Louisiana.

Questi animali sono piuttosto comuni in questa zona. Purtroppo anche a causa della loro introduzione, insieme alla diminuzione della qualità ecologica di alcune acque superficiali, stanno soppiantando il gambero di fiume autoctono. In Italia, attualmente, il gambero di fiume è in forte rarefazione e rimane confinato in zone limitate; in genere si tratta di zone poco o per nulla antropizzate, dalle acque pulite e ben ossigenate. In Italia la sua presenza è stata recentemente segnalata in alcuni torrenti abruzzesi e nel bacino del Bussento, in provincia di Salerno. Il gambero d’acqua dolce ha sostenuto per secoli, almeno in parte, molte comunità contadine. Soprattutto in alcune aree del Veneto, era considerato “cibo povero, buono, per ingannare la fame e non per saziarla“.
Era talmente numeroso che anche i più piccoli riuscivano facilmente a catturarlo senza difficoltà. Qualsiasi attrezzo era adatto per catturarlo, un barattolo, un catino, un pezzo di rete. Di gamberi di fiume mi raccontava anche mio padre, che era solito catturarli nei piccoli rii della zona del basso Monferrato. Nel 1859 – 1860 in Lombardia, venne descritta per la prima volta la “peste del gambero“, associata al fungo Aphanomyces astasci, importato involontariamente dal nord America insieme al gambero Orconectes limosus (Rafinesque, 1871). Quest’ultimo, resistente all’infezione, trasferì come portatore sano la malattia alla specie italica, che venne immediatamente decimata. Il gambero della Louisiana venne importato anche per sopperire a questa decimazione, in quanto si riproduce facilmente, ed altrettanto facilmente può essere allevato. Introdotto a scopo commerciale in Toscana è sfuggito al controllo degli allevamenti, diffondendosi velocemente anche nella zona del Varesotto. E non a caso proprio l’immagine di un gambero della Louisiana è stata utilizzata per il manifesto di una mostra naturalistica allestita lo scorso anno in primavera presso i Musei Civici di Villa Mirabello a Varese. La mostra si occupava proprio della proliferazione di specie alloctone in Italia.

Per chiudere questa rassegna, non certamente esaustiva, in quanto si potrebbe parlare di altri animali che sono diventati “inquilini” dell’impianto e che sono utili (mi riferisco alla biscia d’acqua ), è arrivato il momento di parlare degli anfibi.

Mi sono molto appassionato a questa specie di animali. Le specie appartenenti agli anfibi sono tra le più minacciate. Si calcola che delle 85 specie europee il 60% circa sia in rapido declino come numero di esemplari e la situazione italiana sarebbe tra le più gravi dal momento che l’Italia ospita un maggior numero di specie complessivo. Sono animali in pericolo per una serie di ragioni (tra le quali la bonifica delle zone acquatiche, la deforestazione, l’inquinamento diffuso.) Quando ci siamo resi conto che vi erano degli esemplari di rana italica in alcune vasche non utilizzate dell’impianto, abbiamo cercato di creare per loro un habitat dove potessero trovarsi a loro agio.

Questa foto ritrae un esemplare posizionato sopra un asse di legno. L’asse permette alla rana di fuoriuscire da una vasca di contenimento non più utilizzata che si è riempita di acqua, per poi potervi fare ritorno se necessario.

Allo stesso modo, in una vasca di accumulo che si utilizza in caso di forti precipitazioni piovose (evento tutt’altro che raro di questi tempi), abbiamo creato delle isole artificiali per questi simpatici anfibi, per fare in modo che vi si possano issare per riposarsi.

Come si può vedere, il depuratore dove lavoro si è trasformato in una specie di oasi per alcuni animali. O in una specie di bioparco.

Ho sempre pensato che sia importante proteggere la biodiversità. E la foto che segue è una di quelle che sono riuscito a scattare con molta pazienza, ma che mi ha dato molta soddisfazione.

E’ scattata all’interno della vasca di contenimento, quella in cui abbiamo predisposto la via di uscita. Mi sono sentito per un attimo come un fotografo del National Geographic. Per altro sono anche l’addetto al salvataggio delle lucertole che incautamente riescono ad entrare nell’ufficio del Laboratorio. Le recupero su un foglio di carta da filtro, poi delicatamente le libero nel prato adiacente. E invariabilmente mi viene in mente l’operazione che Primo Levi faceva con i ragni, descritta in “Fosforo” ne “Il sistema periodico”.

Mi chiamava ad espellere un ragnetto dal suo banco di lavoro (non dovevo però ammazzarlo, ma metterlo in un pesafiltri e portarlo fuori nell’aiuola), e questo mi faceva sentire virtuoso e forte come Ercole davanti all’Idra di Lerna, ed insieme tentato, perché percepivo la intensa carica femminile della richiesta.

Da Fosforo, Primo Levi

Tutto questo non è in conflitto con quello che faccio, anzi il contrario. Prendersi cura di questi animali è uno stimolo maggiore per occuparsi di depurazione con impegno e passione. E questi “inquilini” me lo ricordano ogni giorno.

Elementi della tavola periodica: Manganese, Mn.

Rinaldo Cervellati

 

Il manganese (Mn) è l’elemento n. 25 della Tavola Periodica. Non si trova libero in natura ma combinato in alcuni minerali, il più importante dei quali è la pirolusite, costituita essenzialmente da biossido di manganese (MnO2). Importante è anche la romanechite (ossidi di manganese e idrossido di bario), costituente principale dello psilomelano, che è un insieme di minerali.

Altri minerali di manganese economicamente importanti mostrano solitamente una stretta associazione con minerali di ferro.

Pirolusite

Diversi ossidi di manganese, ad esempio la pirolusite, abbondante in natura, furono usati come pigmenti sin dall’età della pietra. Le pitture rupestri di Lascaux (Francia), datate fra 30.000 e 24.000 anni fa, contengono pigmenti a base di manganese.

Pitture rupestri a Lascaux (Francia)

L’origine del nome manganese è alquanto complessa. Nell’antichità, due minerali neri provenienti dalla regione detta Magnesia (oggi situata in Grecia) erano entrambi chiamati magnes dal loro luogo di origine, ma avevano caratteristiche e proprietà molto diverse. Il magnes definito maschile di colore grigio scuro con venature rossastre attirava il ferro (si trattava del minerale di ferro ora noto come calamita o magnetite, da cui probabilmente l’origine del termine magnete). Il magnes detto femminile di colore nero non attraeva il ferro, ma era usato per colorare il vetro. Questo magnes femminile era la pirolusite. Né questo minerale né il manganese elementare sono magnetici.

Composti di manganese sono stati usati da vetrai egiziani e romani, sia per aggiungere sia per rimuovere il colore dal vetro. L’uso di questi composti come “sapone per vetrai” è proseguito nel Medioevo fino ai tempi moderni ed è evidente nel vetro trecentesco di Venezia.

Nel 16° secolo la pirolusite era chiamata manganesum dai vetrai, forse come concatenazione di due parole, poiché alchimisti e vetrai dovevano differenziare fra magnesia nigra (il minerale nero) e magnesia alba[1] (un minerale bianco, proveniente anche esso dalla Magnesia, utile anche nella produzione del vetro). Michele Mercati[2] chiamò manganesa la magnesia nigra, in seguito il metallo isolato da essa divenne noto come manganese (in tedesco: Mangan).

Nel 18° secolo diversi chimici, fra i quali Carl Wilhelm Scheele, identificarono importanti composti del manganese, come ad es. il permanganato di potassio, usato come antisettico, e scoprirono che facendo reagire il biossido di manganese con l’acido muriatico (acido cloridrico) si otteneva il cloro. Tutto ciò fece supporre che i composti del manganese dovessero contenere un nuovo elemento, ma il merito di averlo isolato per primo va allo svedese Johan Gottlieb Gahn[3] che lo ottenne arrostendo la pirolusite con carbone (in termini chimici riducendo il biossido di manganese con carbonio: MnO2 + C ® Mn +CO2).

Manganese metallico

Il manganese con le sue 1000 ppm (0.1% ca.) occupa il 12° posto per abbondanza fra gli elementi chimici nella crosta terrestre. Il suolo contiene 7-9000 ppm di manganese con una media di 440 ppm. L’acqua di mare ha solo 10 ppm di manganese e l’atmosfera ne contiene 0,01 μg/m3.

Le risorse terrestri sono grandi ma distribuite in modo irregolare. Circa l’80% delle riserve di manganese conosciute nel mondo si trovano in Sud Africa; altri importanti depositi sono in Ucraina, Australia, India, Cina, Gabon e Brasile.

Distribuzione delle risorse di manganese (minerali), 2006

Secondo la stima del 1978, il fondo oceanico conterrebbe 500 miliardi di tonnellate di noduli di manganese. I tentativi di trovare metodi economicamente validi per la raccolta di questi noduli furono abbandonati negli anni ’70.

In Sud Africa la maggior parte dei depositi identificati si trova vicino a Hotazel nella Provincia di Northern Cape, con una stima (2011) di 15 miliardi di tonnellate. Nel 2011 il Sudafrica ha prodotto 3,4 milioni di tonnellate di manganese, superando tutte le altre nazioni.

Il manganese metallico si ottiene ancor oggi per riduzione del suo diossido. Come riducente però non si usa più il carbone ma una miscela di gas idrogeno e monossido di carbonio che fornisce sia il calore necessario (il processo avviene a 850 °C) sia l’opportuno riducente. Il diossido di manganese si riduce a monossido (MnO), che viene raffreddato e opportunamente frantumato. Questo composto viene poi inviato a un reattore che riduce ulteriormente il monossido di manganese a manganese metallico per reazione con solfato ferroso in ambiente acido. Il rendimento del processo è del 92%.

Il metallo può essere ulteriormente purificato per via elettrolitica.

Il manganese è essenziale per la produzione di ferro e acciaio per le sue proprietà desolforanti, deossigenanti e leganti.

La produzione dell’acciaio e altre leghe ferrose assorbe attualmente dall’85% al 90% della produzione mondiale di manganese: fra le altre cose, il manganese è un componente chiave per gli acciai inossidabili a basso costo e per alcune leghe di alluminio di largo impiego.

Piatti e lastre in manganese sono utilizzati durante la costruzione o riparazione di un tipo di impianti di sabbiatura chiamati granigliatrici, dotati di motori elettrici collegati a speciali turbine che sparano graniglia metallica ad alta velocità sabbiando il pezzo. Il manganese è più resistente del ferro durante il processo di sabbiatura e risulta essenziale per la longevità dell’impianto.

Il manganese può assumere tutti gli stati di ossidazione da +1 a +7 sebbene i più comuni siano +2, +3, +4, +6 e +7. Agli stati di ossidazione più bassi funziona chimicamente come metallo formando ossidi basici (es. MnO), a quelli più alti funziona da non metallo fornendo ossidi acidi, come nei permanganati del cui sale di potassio si è già detto.

Il biossido di manganese (MnO2) è stato ampiamente utilizzato nelle batterie “a secco” zinco-carbone[4]. Lo stesso materiale funziona anche nelle più recenti batterie alcaline, che utilizzano la stessa reazione di base, ma una diversa miscela di elettroliti. Nel 2002 sono state utilizzate più di 230.000 tonnellate di biossido di manganese per questo scopo e sono attualmente in continuo aumento causa lo sviluppo delle auto elettriche.

Il monossido di manganese (MnO) è un pigmento marrone che si usa per vernici e si trova nelle terre naturali (ad esempio nella terra di Siena e nella terra di Siena bruciata ).

Composti del manganese si usano anche per togliere la tinta verdastra conferita al vetro dalle impurezze di ferro; a concentrazioni molto alte donano al vetro un colore violetto.

In chimica organica sono utilizzati come catalizzatori in molte sintesi.

Il riciclo degli scarti degli acciai e delle altre leghe non ferrose contenenti manganese procede come descritto nei precedenti post sul nickel e il cobalto, il metallo riciclato è riutilizzato nell’industria siderurgica. Per coloro particolarmente interessati ai dettagli del riciclaggio dei metalli dagli scarti di tale industria si rimanda al volume curato da Scott Sibley [1].

Il riciclo del manganese dalle batterie alcaline al litio per auto elettriche è più complicato perché lo si deve separare da litio, nickel e cobalto. Illustriamo qui il procedimento messo a punto da una nota fabbrica tedesca di automobili [2]. Con riferimento alla figura:

Riciclaggio manganese da batterie al litio

da ciascun elemento del sistema di batterie si tolgono dapprima i cavi elettronici da cui vengono separati alluminio e rame dall’acciaio, il corpo del modulo viene invece flottato e triturato poi asciugato e infine setacciato fino a ottenere una polvere nera contenente il manganese insieme a litio, nickel e cobalto. Questi metalli vengono poi separati singolarmente con un procedimento idrometallurgico.

In vista della costante diminuzione delle risorse minerarie e del contemporaneo aumento del consumo globale di manganese, lo sviluppo di tecnologie rispettose dell’ambiente per la ricerca di fonti alternative di Mn ha acquisito grande importanza. Il recupero dai residui minerari o metallici utilizzando gli approcci convenzionali è poco remunerativo a causa degli elevati costi di gestione e di energia coinvolti. Il recupero di Mn mediante biolisciviazione con diversi microrganismi può quindi diventare una valida alternativa verde alle attuali tecniche pirometallurgiche. La biolisciviazione è un complesso di operazioni che si compiono su materiali misti, contenenti metalli e altro materiale, al fine di portare in soluzione i metalli, lasciando come residuo indisciolto la porzione non metallica. La trasformazione è lenta se si usano reagenti inorganici (ad es. acidi), mentre è fortemente accelerata se alla soluzione acida si aggiungono particolari organismi, battéri o funghi. La biolisciviazione batterica è principalmente dovuta a influenza enzimatica, mentre quella fungina non è enzimatica.

Schema del meccanismo generale della biotrasformazione batterica intracellulare di Mn [3]

Una rassegna su questa interessante prospettiva “verde” per lo sfruttamento degli scarti di miniera e il riciclo del manganese è stata pubblicata da S. Gosh et al. [3].

Il manganese è un elemento essenziale per l’organismo umano. È presente come coenzima in diversi processi biologici, tra cui il metabolismo dei macronutrienti, la formazione delle ossa e i sistemi di difesa dai radicali liberi. È un componente fondamentale in dozzine di proteine ed enzimi. Il corpo umano contiene circa 12 mg di manganese, principalmente nelle ossa, il rimanente è concentrato nel fegato e nei reni. Nel cervello umano il manganese è legato a metalloproteine, in particolare la glutammina sintetasi negli astrociti[5].

L’enzima Mn-Superossido dismutasi (Mn-SOD) è il tipo di SOD presente nei mitocondri delle cellule eucariote, ma anche nella maggior parte dei batteri. Questo enzima è probabilmente uno dei più antichi, poiché quasi tutti gli organismi che vivono in presenza di ossigeno lo usano per affrontare gli effetti tossici del superossido (O2), formato dalla riduzione del normale ossigeno molecolare (O2).

Cioccolato fondente, riso, noci, pasta e farina contengono discrete quantità del minerale, ma anche tutta una serie di aromi, dallo zafferano al prezzemolo, al basilico [4].

Negli Stati Uniti le dosi giornaliere raccomandate variano dai 1,2 ai 2,3 mg/giorno per i maschi ai 1,2 – 1,8 mg/giorno per le femmine a seconda dell’età. Per le donne incinte e i lattanti le dosi sono aumentate a 2 e 2,6 mg/giorno di manganese. In Europa la dose media raccomandata per individui maggiori di 15 anni è di 3,0 mg/giorno, che è pure quella consigliata per le donne incinte. Per bambini e ragazzi da 1 a 14 anni le dosi vanno da 0,5 a 2,0 mg/giorno.

Casi di deficienza da manganese sono comunque molto rari.

I composti di manganese sono meno tossici di quelli di altri metalli come il nickel e il rame.  Tuttavia, l’esposizione a polveri e fumi di manganese non deve superare il valore massimo di 5 mg/m 3 anche per brevi periodi a causa del suo livello di tossicità. L’avvelenamento con manganese è stato associato a compromissione delle capacità motorie e a disturbi cognitivi.

A livelli di 500 mg/m3 il manganese diventa molto pericoloso per la salute e la vita.

Il manganese è importante anche nell’evoluzione fotosintetica dell’ossigeno nei cloroplasti delle piante. Per soddisfare il fabbisogno, la maggior parte dei fertilizzanti vegetali ad ampio spettro contiene manganese.

Infine un accenno al ciclo biochimico, ricordando anzitutto che con questo termine, tipico delle Scienze della Vita e della Terra e dell’Ecologia, si intende il percorso attraverso il quale una sostanza chimica si muove attraverso compartimenti biotici (biosfera) e abiotici (litosfera, atmosfera e idrosfera) della Terra. Nella figura è mostrata parte del ciclo dei macronutrienti e dei micronutrienti (oligoelementi) che comprende anche il manganese.

Ciclo biogeochimico schematico di macro e micronutrienti

Come ricordato più volte in questo blog molti cicli biogeochimici sono attualmente studiati per la prima volta poiché i cambiamenti climatici e l’impatto delle attività umane stanno cambiando drasticamente la velocità, l’intensità e l’equilibrio di questi cicli relativamente poco conosciuti.

Per chi volesse saperne di più, rimando alla citazione [5].

Opere consultate

https://en.wikipedia.org/wiki/Manganese

Bibliografia

[1] S. F. Sibley (Ed.), Flow Studies for Recycling Metal Commodities in the United States., U.S. Geological Survey, Reston, Virginia, 2004.

[2] https://www.volkswagen-newsroom.com/en/stories/lithium-to-lithium-manganese-to-manganese-4662

[3] S. Gosh et al., A greener approach for resource recycling: Manganese bioleaching., Chemosphere, 2016, 154, 628-639.

[4] http://www.dietabit.it/alimenti/manganese/

[5] V. Cilek (a cura di), Earth System: History and Natural Variability – Volume IV, UNESCO-EOLSS, 2009, pp. 229-249.

[1] Il nome magnesia fu infine usato per riferirsi solo alla bianca magnesia alba (ossido di magnesio), che fornì il nome di magnesio per l’elemento libero quando fu isolato più di trenta anni dopo, precisamente nel 1808 da Humphrey Davy.

[2] Michele Mercati (1541 – 1593) medico italiano, fu sovrintendente dell’Orto Botanico Vaticano sotto i papi Pio V, Gregorio XIII, Sisto V e Clemente VIII. Fu uno dei primi studiosi a riconoscere gli strumenti di pietra preistorici come oggetti creati dall’uomo piuttosto che pietre naturali o mitologiche.

[3] Johan Gottlieb Gahn (1745 – 1818), chimico e metallurgista svedese, isolò il manganese metallico nel 1774. Dieci anni dopo fu nominato membro dell’Accademia Reale Svedese delle Scienze.

[4] Dette anche pile Leclanché, dal nome del loro inventore nel 1866. Il biossido di manganese impastato con cloruro d’ammonio funge da accettore di idrogeno nelle reazioni che avvengono al catodo di zinco. La barretta di carbone funge unicamente come trasportatore di elettroni.

[5] Gli Astrociti sono caratteristiche cellule a forma di stella presenti nel cervello e nel midollo spinale. Svolgono molte funzioni, tra cui il supporto biochimico alle cellule endoteliali che formano la barriera emato-encefalica, la fornitura di sostanze nutritive al tessuto nervoso, il mantenimento dell’equilibrio degli ioni extracellulari e un ruolo nel processo di riparazione e cicatrizzazione del cervello e del midollo spinale dopo trauma o lesioni.

Dalle forze di van der Waals all’adesione.2. Perchè il ghiaccio è scivoloso?

Claudio Della Volpe

Nella prima parte di questo post abbiamo affrontato il tema di esprimere le forze di van der Waals fra molecole di gas reali nel contesto quantistico e soprattutto tenendo conto della velocità finita con cui i campi si propagano; questo ci ha fatto concludere che le forze di van der Waals in questo contesto sono definibili come forze di Casimir-Polder e il loro comportamento ha a che fare con la natura più intima della materia e dello spazio-tempo (l’energia di punto zero).

In questa seconda parte introdurremo un secondo punto di vista quello macroscopico; ossia invece di ragionare a partire dall’interazione fra due molecole o atomi ragioneremo sull’interazione fra corpi macroscopici, cosa che ha enorme importanza nei casi concreti.

Già Casimir aveva introdotto questo punto di vista col suo effetto, noi ripartiremo dalle forze non ritardate, ossia nella versione vdW. E cercheremo conferme macroscopiche di questi effetti e di queste forze.

Introduciamo qui un’idea molto produttiva che è quella della cosiddetta pressione interna.

La equazione di van der Waals è come detto la seguente:

il termine additivo sulla pressione, +a/V2 che la riconduce ad un comportamento ideale, quanto vale in un caso comune?

Ricordate che la pressione interna è la quantità da aggiungere al valore sperimentale, che si oppone a quella “tradizionale”, che ne riduce il valore “ideale” dunque è una pressione in effetti negativa.

Usando i valori tabulati che sono espressi in kPa L2 e considerando di avere 1 mole di vapor d’acqua a c.n. con un volume dunque di 22.4 litri circa, il risultato sarà dell’ordine di 1000 Pa (per la precisione 1102Pa), dunque l’1% della pressione totale (1atm = 101.325Pa).

Stimiamo la stessa quantità nell’acqua liquida o nel ghiaccio, ossia in fase condensata.

Qui potremmo usare una delle più belle equazioni della termodinamica classica.

Partendo dal primo principio:

dU=TdS-pdV

deriviamo contro il V a T costante

(dU/dV)T=T(dS/dV)T-p

ed infine ricordando le famose relazioni di Maxwell (le relazioni fra derivate seconde) sostituiamo la derivata a destra ottenendo

(dU/dV)T =pressione interna=T(dp/dT)V-p

Questa quantità si trova tabulata in letteratura (J. Chem. Phys. 13, 493 (1945); doi: 10.1063/1.1723984 ) ed ha un valore che si aggira per la maggior parte dei liquidi attorno a 0.2-0.7 GPa, circa 1 milione di volte più alta che nei gas.

E questa è già una bella osservazione che è espressa nel grafico qui sotto estratto da un classico della teoria cinetica

lNTRODUCTlON TO THERMODYNAMicS AND KlNETlC THEORY O f MATTER: Second Edition A. I. Burshstein Copyright@ 2005 WILEY-VCH

A sinistra il confronto fra pressione mozionale o traslazionale ed interna in un gas e a destra in un solido o liquido. La differenza fra la pressione traslazionale o mozionale e quella interna è uguale alla pressione sperimentale. In un gas la pressione traslazionale è poco più grande di quella interna, ed entrambe sono piccole; in una fase condensata invece, a destra entrambe sono grandi e quella traslazionale è ancora di poco più grande di quella interna. I valori finali di p sperimentale sono uguali ma sono il risultato di due differenze molto “diverse” tra loro, due numeri piccoli nei gas e due numeri grandi in fase condensata.

Questa grandezza, la pressione interna, correla bene, linearmente con altre quantità; per esempio se mettiamo in grafico la pressione interna e la tensione superficiale dei liquidi troviamo un ottimo accordo:

La pressione interna “strizza” il liquido o il solido comprimendone la superficie, che dall’altro lato non ha molecole che bilancino la pressione interna e ne ispessisce la superficie esterna, costruendo una sorta di membrana, che dà luogo all’effetto di tensione superficiale. Questa membrana era stata immaginata già da Thomas Young nel 1804.

E’ la membrana che appare visibile quando un insetto come l’idrometra (Hydrometra stagnorum) “schettina “ sull’acqua.

Nel grafico di pressione interna e tensione superfciale, come si vede, l’acqua costituisce un’eccezione, un outlier, è fuori linea, poi vedremo perchè.

Prima però ragioniamo sulle conseguenze degli effetti di questa pressione interna. Se consideriamo il diagramma di fase dell’acqua, vediamo che a questo valore di pressione (0.17GPa) e alla temperatura attorno allo zero, fino a quasi -38°C, l’acqua è liquida (la protuberanza a becco verde fra i ghiacci II, III, V e VI).

Questo fa capire una conseguenza importante; la pressione interna esercitata dal bulk dell’acqua nei confronti della propria superficie, la altera profondamente. Il ghiaccio (che ha una densità minore dell’acqua liquida) non resiste a questa pressione così elevata e fonde assumendo una distribuzione molecolare a maggiore densità, come mostrato nel grafico seguente, ottenuto per via numerica e confermato da varie misure sperimentali.

Quindi la superficie del ghiaccio o della neve fra 0 e -38°C possiede un sottile strato di acqua liquida; questo strato ha uno spessore variabile, decrescente con la temperatura; questo strato, che esiste si badi bene senza effetto di pressione esterna, è quello che permette di sciare, pattinare, schettinare o fare curling. Quando esso scompare, sotto -38°C il ghiaccio aumenta bruscamente il suo attrito e non si riesce più a sciare.

La comune interpretazione che sciare o pattinare si può grazie all’effetto del peso del pattinatore sui pattini funzionerebbe solo a 1°C sotto zero, ma non più giù, perchè nessun pattinatore o sciatore pesa abbastanza da esercitare una pressione sufficiente, le forze di attrazione intermolecolari si.

Prendete un pattinatore da 80 kg e mettetelo su un paio di pattini con un coltello da 5cm2 (25cm per 2mm di spessore), la pressione sarebbe di 8000N/0.001m2=8MPa solamente.

Per verificare se bastano usiamo la equazione di Clausius Clapeyron che ci da l’aumento di temperatura di fusione per un certo aumento di pressione.

la variazione fra il volume del ghiaccio e dell’acqua per un kg è 0.0905 litri (d=0.917) il calore latente di fusione è 3.33×105 J/kg.

273x-0.0905×10-3 x 8000000 /3.33×105 = -0.59°C. Quindi fino a -0.59°C bastano e poi?

E a t più basse? No non si pattina o si scia per questo effetto, come si crede comunemente.

http://physicspages.com/pdf/Schroeder/Schroeder%20Problems%2005.32.pdf

In questo bell’articolo (Why ice is slippery,2005 Physics today, p.50) una serie di approfondimenti (https://physicstoday.scitation.org/doi/full/10.1063/1.2169444 )

Il fatto che la superficie del ghiaccio possedesse un film di acqua era stato notato da Faraday (M. Faraday, Experimental Researches in Chemistry and Physics, Taylor and Francis, London (1859), p. 372. 
) con un esperimento elegantissimo che faceva attaccare due sfere di ghiaccio al semplice contatto (regelation)

Questo fenomeno costituì oggetto di discussione fra Faraday, J.J. Thomson, quello del plum-pudding model dell’atomo e che non ci credeva e perfino Gibbs, che ci credeva. Ed è stato poi confermato varie volte, per esempio in questo bel lavoro del 1954 di Nakaja e Matsumoto che riproducono l’esperimento di Faraday.

O in quest’altro di Hosler o in molte analisi fatte con i raggi X sulla lunghezza di legame nelle molecole di superficie.

Hosler, R. E. Hallgren, Discuss. Faraday Soc. 30, 200 (1961); C. L. Hosler, D. C. Jensen, L. Goldshlak, J. Meteorol. 14, 415 (1957).

Questo effetto che si potrebbe definire “fusione superficiale”, surface melting, è presente anche in altre sostanze: J. W. M. Frenken, J. F. van der Veen, Phys. Rev. Lett. 54, 134

(1985) e produce in esse una superficie intrinsecamente scivolosa.

Finisco il post notando che la formula usata prima per calcolare la pressione interna dà comunque un risultato che fa pensare, in quanto l’acqua, nella quale la tensione superficiale è più forte, ma nella quale la correlazione con la pressione interna viene meno, in questo si assomiglia ad altri liquidi con legami idrogeno e ci dà l’indicazione che qualcosa non torna.

Questa osservazione l’aveva fatta alcuni anni fa il compianto H.S. Frank (famoso per la bibbia sull’acqua, Water in 7 voll) (J. Chem. Phys. 13, 493 (1945); doi: 10.1063/1.1723984 ); l’acqua ed in genere le molecole lontane da una forma “ideale” semplice, sferica sono situazioni in cui una parte dell’energia libera del sistema è catturata da gradi di libertà “non manifesti”. Se usate questa stima della pressione interna l’acqua sembra peggio del pentano per esempio, il che è strano davvero. Molecole come gli idrocarburi senza forti interazioni specifiche sembrano avere la stessa pressione interna dell’acqua e dunque le stesse forze di interazione. Fatto che fa sorgere dubbi.

Per questo motivo la grandezza in questione, la pressione interna di un liquido si potrebbe stimare altrimenti, usando un’altra quantità: la energia di coesione o densità di energia di coesione (ced), ossia l’entalpia di vaporizzazione (oppure la somma di entalpia di vaporizzazione e fusione)per unità di volume. Il confronto fra i due tipi di dato è fatto per esempio da Y. Marcus (Internal Pressure of Liquids and Solutions, Yizhak Marcus, 2013 Chem. Rev.)

Una energia per unità di volume è equivalente dimensionalmente ad una forza per unità di superficie e dunque ad una pressione!!

U/V=Fxl /(lxS) dunque dividendo per l entrambi, numeratore e denominatore si ha una pressione! Per i liquidi “normali” diciamo senza legami idrogeno, le due quantità sono molto simili, ma in quelli con legami idrogeno, no; i legami idrogeno non sono forze di van der Waals e hanno effetti diversi. Ricordatelo, ci servirà per i prossimi post.

Per l’acqua questo valore è di circa 2.3 GPa, allo stato liquido (mentre la pressione interna calcolata nell’altro modo è di soli 0.17GPa); di poco superiore sarebbe quella del ghiaccio, appena sopra i 2.5GPa. Questo è dunque l’ordine di grandezza della pressione che si esercita anche all’interfaccia e che giustifica un comportamento dell’acqua molto particolare.

A questo punto nel diagramma di fase l’acqua si sposterebbe verso altre forme di ghiaccio piuttosto che verso uno stato disordinato più vicino al liquido.

A questo stadio della nostra riflessione la questione rimane irrisolta, ma si può pensare che l’effetto di strizzatura superficiale, distruggendo la struttura regolare impedisca la formazione di legami idrogeno e riconduca le interazioni molecolari nel più semplice stato di interazioni di vdW.

Nel prossimo post analizzeremo il caso delle interazioni fra oggetti macroscopici in modo più formale, andando a scoprire chi erano Hamaker e Lifshitz, due giganti della chimica e della fisica.

(continua).