Riciclo e diversificazione degli usi dell’acqua. Cosa si sta sperimentando.

Mauro Icardi

L’acqua è una risorsa rinnovabile, ma le attuali condizioni ambientali (riscaldamento globale, diffusione ubiquitaria di inquinanti emergenti e non ancora regolamentati e normati), la rendono una risorsa limitata. In particolare il bilancio idrico è negativo perché il consumo è più veloce della fase di recupero, e la quantità di acqua inquinata tende a prevalere su quella tendenzialmente pura. A questo occorre aggiungere il forte impatto che il cambiamento climatico sta avendo sul regime delle precipitazioni. Per queste ragioni è necessario programmare adeguatamente le gestione delle fonti di captazione delle acque primarie, e sarà necessario in un futuro molto prossimo attivarsi per un riciclo delle acque reflue. Queste ultime potrebbero, dopo adeguati processi di trattamento, essere destinate ad usi diversi da quello potabile. Tra gli altri l’utilizzo irriguo o quello industriale, senza dimenticare ad esempio quello non primario del lavaggio degli autoveicoli. La legislazione italiana già prevede la possibilità di riuso delle acque per scopi agricoli e industriali. Per ottenere un’acqua destinata al riutilizzo che sia di qualità, è necessario in ogni caso che siano rimossi gli inquinanti non convenzionali, che si sono aggiunti negli anni a quelli convenzionali.

I composti organici di sintesi che vengono immessi nel ciclo dell’acqua provengono da diverse fonti: farmaci, pesticidi, cosmetici e prodotti chimici di uso sia domestico sia industriale. La ricerca nel settore si sta occupando di questo problema. Tramite l’utilizzazione di processi di adsorbimento, di filtrazione a membrana (MBR) , e di processi ossidativi avanzati. In qualche caso le tecniche vengono usate in combinazione tra loro, sfruttando le proprietà peculiari di ognuna di esse. Per esempio la microfiltrazione o l’ultrafiltrazione possono essere utilizzate solo in combinazione con una fase di adsorbimento. Questo perché la fase di filtrazione avanzata riesce a trattenere le particelle solide nei reflui, ma non è efficace per rimuovere i microinquinanti organici solubili in acqua.

Il trattamento di osmosi inversa riesce ad essere efficace, sia nei confronti delle sostanze disciolte, che nei confronti dell’inquinamento batteriologico. In Germania il progetto MULTI-ReUse finanziato dal Ministero tedesco dell’istruzione e della ricerca (BMBF), sta mettendo a confronto le varie tecnologie per valutarle e confrontarle. La sperimentazione si sta attuando presso la città di Nordenham in Bassa Sassonia. Si tratta di una regione con una forte domanda di acqua da parte di clienti industriali e commerciali. Gran parte dell’acqua è necessaria come acqua di servizio, ad esempio come acqua di processo, di raffreddamento o di pulizia. Per proteggere le risorse di acqua potabile si sta valutando come l’acqua trattata dall’impianto di trattamento delle acque reflue possa essere ulteriormente trattata per essere in grado di offrire diversi tipi di acqua di servizio in diverse qualità e quantità. E’ quindi stato installato un impianto pilota per lo studio di questa. ll compito principale del progetto MULTI-ReUse è quindi lo sviluppo, e la valutazione di un sistema modulare di trattamento dell’acqua, al fine di poter offrire acqua di servizio in diverse qualità e volumi per i diversi utilizzi, a prezzi competitivi. Oltre a queste valutazioni tecnico economiche, si cerca di valutare anche l’accettazione socio-culturale di un’operazione di questo genere, fattore decisamente non trascurabile.

E’ quindi stato installato un impianto pilota nel quale, dopo il trattamento biologico convenzionale, l’acqua reflua viene inviata ad un trattamento di flocculazione seguito da un fase di ultrafiltrazione. Quest’ultima rimuove l’inquinamento organico, mentre la rimozione dei sali e dei microinquinanti organici viene effettuata tramite un ulteriore trattamento di osmosi inversa. Per valutare le capacità dell’impianto di essere efficiente nella rimozione degli inquinanti emergenti, sono state effettuate analisi su molecole quali il diclofenac ed il benzotriazolo.

L’abbattimento di questi due inquinanti è risultato pari al 99,8 per il diclofenac e all’88% per il benzotriazolo. Questi risultati sono stati messi a confronto con quelli ottenuti con altre tecnologie, quali l’ozonizzazione, oppure la combinazione di filtrazione su carbone attivo ed ultrafiltrazione, e sono risultati significativamente migliori. Nella prosecuzione del progetto verranno comunque valutate altre tecnologie, tra le quali anche quelle che utilizzano carbone attivo, in combinazione con altre tecnologie, quali la filtrazione a membrana. Oltre a questo si valuterà lo smaltimento del concentrato prodotto dalla fase di osmosi.

Questa sperimentazione è tedesca, ma l’idea di base dovrebbe essere patrimonio comune. Il trattamento delle acque reflue dovrà essere modificato profondamente. Il depuratore classico sarà solo una fase di un processo di trattamento a maggior complessità tecnologica. E la chiusura del ciclo delle acque comporterà un impegno importante per destinare i materiali di risulta dei nuovi trattamenti, ad uno smaltimento adeguato. Come si vede quindi, pulire l’acqua prevede il dover trattare materia residuale. Si chiamino fanghi, o retentato di osmosi o di ultrafiltrazione, non ci si può illudere di sfuggire a questa necessità indifferibile. Le leggi naturali non si aggirano. Si tratti di secondo principio della termodinamica, o come in questo caso di legge di conservazione della massa. Quello con cui alteriamo la purezza dell’acqua richiede un prezzo da pagare, in termini tecnici ed economici, per riportarla ad un grado di purezza accettabile. E pone anche un tema etico. Cioè l’uso che facciamo dell’acqua. Quanta ne sprechiamo, e quanta ne destiniamo ad usi non primari. Vale la pena di rifletterci un poco di più. E auspico che progetti di questo tipo diventino usuali anche in Italia, dove troppo spesso le idee ci sono, ma sono più lente ad essere messe in pratica.

Link del progetto: https://water-multi-reuse.org/en/

La chimica nell’economia globalizzata:il caso dei metalli rari.

Luigi Campanella, già Presidente SCI

Stiamo assistendo ad una fase piuttosto travagliata dell’economia globale.

Gli interlocutori potenziali sono tanti, quelli realmente in grado di incidere e determinare i futuri scenari sono invece pochissimi, da contare sulle dita di una mano.

In particolare Cina e Stati Uniti nella fase più recente sono stati protagonisti di complicate rimostranze a partire dalla guerra tecnologica e dall’applicazione di dazi destinati a limitare il libero mercato. Da chimici non possiamo non focalizzare la nostra attenzione su una delle risposte della Cina alla politica americana di Trump, risposta in relazione ad una delle armi più significative in possesso del governo cinese, spesso dimenticata o sottostimata. Mi riferisco ai cosiddetti metalli rari, materiali chiave per le tecnologie più avanzate, fondamentali per garantire prestazioni elevate in dispositivi tecnologici compatti. L’aggettivo rari tende a contrapporli a quelli comuni come ferro, rame, manganese, alluminio. Si tratta di una cinquantina di elementi, denominati anche strategici o tecnologici, a volte più preziosi dell’oro, come nel caso del rodio che lo è 10 volte di più. Oltre il 90% della produzione dei metalli rari nel mondo, complessivamente valutata nel mondo pari a 25000 tonn/anno, è gestita dalla Cina.

La loro estrazione impegna metodi e processi molto complessi, tanto che l’UE definisce tali elementi come “metalli  critici” che inserisce in una  lista periodicamente aggiornata. Dicevo più sopra dell’impatto di questi metalli sulle applicazioni tecnologiche: si pensi che in uno smartphone di più recente produzione sono presenti circa 70 elementi, alcuni dei quali appartenenti al gruppo dei metalli rari. Probabilmente in questa applicazione i due  rari più importanti sono il neodimio che sostituisce i tradizionali magneti, consentendo rispetto a questi più elevati gradi di miniaturizzazione e l’indio che ha consentito di trasformare gli schermi dei telefoni in display tattili: il vetro del dispositivo viene ricoperto da una griglia composta da ossido d’indio, cosicchè al tocco dello schermo da parte del dito la carica presente su di esso, anche se di modesta entità, consente la registrazione del punto di contatto.

La Cina forte della sua supremazia sia come ricchezza del territorio che come capacità estrattiva e tecnologie di lavorazione già nel 2010 stabilì un embargo di 6 mesi per Giappone ed USA perchè voleva spingere le aziende a comprare i propri prodotti piuttosto che vendere ad esse materiali grezzi. Si tratta di un’arma  importante che potrebbe essere pericolosamente riproposta in un clima di guerra fredda. D’altra parte nel mondo occidentale sta maturando la convinzione che i materiali rari disponibili senza ricorso alle importazioni sono nettamente deficitari rispetto ai fabbisogni, purtroppo in tempi recenti non solo riferiti alle tecnologie, ma anche alla produzione di dispositivi militari, come nel caso degli USA.

Anche Italia e Francia cominciano a rilevare con preoccupazione queste carenze nazionali, per fortuna con attenzione rivolta soprattutto alla produzione di batterie per le auto elettriche. Probabilmente tenuto conto che anche Paesi  Sudamericani  come il  Cile ed Africani come il Congo dispongono di risorse, la differenziazione delle fonti di approvigionamento potrebbe essere una strategia intelligente capace di abbattere la drammaticità del confronto fra big.

Un altro punto fondamentale riguarda il riciclo: spedendo nei Paesi poveri le nostre strumentazioni tecnologiche obsolete facciamo due errori: pensiamo di salvarci l’anima rispetto ai principi di umana solidarietà e rinunciamo ad una strategia di riciclo e recupero: i metalli rari presenti nei dispositivi tecnologici infatti possono essere completamente riutilizzati.

Un nuovo allotropo del carbonio: il ciclocarbonio.

Rinaldo Cervellati

Nella C&EN newsletter del 16 agosto scorso, Laura Howes, col titolo “Chemists use atomic manipulation to nudge cyclo [18] carbon into being.”[1], informa che un gruppo di ricercatori, utilizzando la microscopia a scansione e la manipolazione atomica, hanno sintetizzato e “visualizzato” un nuovo allotropo[1] del carbonio che era stato previsto per la prima volta negli anni ’80.

La notizia è stata data anche da Davide Castelvecchi con dovizia di particolari [2].

L’impresa di realizzare il nuovo allotropo ciclico a 18 atomi di carbonio con legami tripli alternati a legami semplici (figura 1) è riuscita a un gruppo di scienziati formato da chimici del Centro di ricerca IBM di Zurigo e del Dipartimento di Chimica dell’Università di Oxford [3].

Figura 1. Struttura del del ciclo[18]carbonio (ciclocarbonio)

Dapprima P. Gawel e M. Schriven del gruppo di ricerca del prof. H. Anderson di Oxford, hanno sintetizzato la molecola precursore con mezzi chimici. Tale molecola includeva tre eterocicli a quattro atomi di carbonio ciascuno contenente due atomi di ossigeno.

Tale molecola è stata inviata al Laboratorio di Zurigo dove K. Kaiser e F. Schultz del gruppo di ricerca del prof. L. Gross, l’hanno posta su un strato sottile di cristallo di cloruro di sodio in una camera a vuoto. La molecola è stata poi manipolata usando una sonda elettrica in un microscopio a forza atomica[2]. Questa manipolazione ha permesso di eliminare, uno alla volta i tre eterocicli trasformandoli in monossido di carbonio. Il risultato è stato il ciclocarbonio, come mostra lo schema di figura 2 comprendente le microfotografie relative ai vari stadi dell’operazione.

Figura 2. Il precursore a tre anelli (a sinistra), eliminazione uno per volta degli anelli tramite impulsi elettrici (centro sinistra e centro destra), ottenimento del ciclocarbonio (destra). Le corrispondenti immagini AFM sono riportate in basso.

Per completezza la figura 3 mostra lo schema di un microscopio a forza atomica (a sinistra) e l’apparecchiatura reale (a destra).

Figura 3. Schema di un AFM: (1): mensola, (2): Supporto per mensola, (3): Elemento piezoelettrico, (4): Punta (che funge da sonda) , (5): rivelatore di deflessione e movimento (6): campione, (7): xyz drive, (sposta il campione (6) nelle direzioni x, y e z rispetto all’apice della punta (4)) e (8): Regolatore di fase.

Kaiser ha anche usato l’immagine microfotografica per esplorare la struttura della molecola e ha scoperto che la molecola ha una simmetria rotazionale di ordine nove.

Katharina Kaiser

Combinando tale osservazione con i calcoli, il gruppo ha potuto determinare che il ciclocarbonio è costituito da una sequenza alternata di legami singoli e tripli, in contrasto con l’alternativa teorica che aveva previsto un anello continuo di doppi legami.

I legami alternati sono interessanti perché potrebbero conferire alle catene di carbonio a anello le proprietà dei semiconduttori. Gawel dice che potrebbero essere utilizzate in futuro come componenti dei transistor molecolari.

Rik Tykwinski, un chimico fisico organico dell’Università di Alberta, non coinvolto nel lavoro, afferma: “Il ciclocarbonio è insieme allotropo e molecola, motivo per cui questa sintesi è così sensazionale”. Tykwinski paragona la scoperta a quella dei fullereni: “Questo è davvero uno studio impotantissmo, punto di riferimento in chimica del carbonio.”

Castelvecchi ci informa che per ora, i ricercatori studieranno le proprietà di base del ciclocarbonio che essi per ora sono stati in grado di produrre solo una molecola per volta. Continueranno anche a provare tecniche alternative che potrebbero aumentarne le quantità. In effetti Gawel dice che il lavoro è finora una fondamentale ricerca di base.

Il chimico Roald Hoffmann della Cornell University, Premio Nobel 1981 e altri hanno a lungo teorizzato la possibilità di lunghe catene chiuse di carbonio, afferma che “Il lavoro è bellissimo”, anche se, aggiunge, resta da vedere se il ciclocarbonio è stabile quando viene tolto dalla superficie salina e se può essere sintetizzato in modo più efficiente di una molecola alla volta.

Per l’esattezza, i due gruppi, a Zurigo e a Oxford, avevano iniziato a collaborare prima del recentissimo risultato. Nel 2016, Leo Gross e i suoi colleghi di Zurigo avevano dimostrato come si potevano usare gli impulsi di tensione dalla punta dell’ago di un microscopio a scansione per rompere, uno ad uno, i legami in una molecola e poi controllare ciò che era successo con la microscopia a forza atomica (AFM). Quando Przemyslaw Gawel, postdoc nel laboratorio di Harry Anderson a Oxford, ascoltò Gross presentare il lavoro in una conferenza, vide l’opportunità di usare la tecnica IBM per seguire i riarrangiamenti di catene di atomi di carbonio. Gawel si presentò e i due gruppi iniziarono a collaborare[4], collaborazione che ha poi portato al cicl carbonio come qui è stato illustrato.

 

 

 

Leo Gross                 Przemyslaw Gawel             Harry L. Anderson

Bibliografia

[1] L. Howes, Chemists use atomic manipulation to nudge cyclo [18] carbon into being. C&EN news, August 16, 2019.

https://cen.acs.org/physical-chemistry/chemical-bonding/Chemists-use-atomic-manipulation-nudge/97/web/2019/08?utm_source=NonMember&utm_medium=Newsletter&utm_campaign=CEN

[2] D. Castelvecchi, Chemists make first ring of pure carbon., Nature, Vol 572, 22 August 2019

[3] K. Kaiser et al., An sp-hybridized molecular carbon allotrope, cyclo[18]carbon., Science, 2019, DOI: 10.1126 /science.aay1914

[4] N. Pavlicek et al., Polyyne formation via skeletal rearrangement induced by atomic manipulation., Nature Chemistry, 2018, DOI: 10.1038 /s41557-018-0067-y

[1]L’allotropia è la proprietà di esistere in diverse forme, presentata da alcune sostanza semplici (cioè sostanze i cui atomi sono dello stesso elemento). Le diverse forme sono note come allotropi. La definizione si deve a J.J. Berzelius (1779-1848). Tipico esempio è proprio il carbonio che esiste come grafite, diamante, fullereni, nanotubi e in questa nuova forma.

[2] La microscopia a forza atomica (atomic force microscopy, AFM) è un tipo di microscopia a sonda di scansione (SPM), con una risoluzione dell’ordine delle frazioni di un nanometro, oltre 1000 volte migliore del limite ottico. Le informazioni vengono raccolte “sentendo” o “toccando” la superficie con una sonda meccanica che permette movimenti precisi. Le operazioni vengono quindi controllate via microfotografica.

Il metano rema contro.

Claudio Della Volpe

Questo post esce in contemporanea sul blog di ASPO-Italia

Abbiamo ripetutamente discusso la questione se il metano sia o meno un vero aiuto per la transizione energetica a causa dei problemi climatici, ossia se tenuto conto di tutto il ciclo produttivo la sostituzione del metano a petrolio e carbone possa considerarsi un oggettivo passo avanti nella direzione della riduzione dell’effetto serra di origine antropica.

Vi ricordo qui alcuni post che ne parlavano:

https://ilblogdellasci.wordpress.com/2017/06/09/la-pubblicita-di-eni-il-metano-ci-da-una-mano-o-no/

https://ilblogdellasci.wordpress.com/2019/03/15/commenti-alla-proposta-di-piano-nazionale-integrato-per-lenergia-e-il-clima/

https://ilblogdellasci.wordpress.com/2019/03/04/lambiente-al-portico-della-pace/

Ed abbiamo concluso che le cose non stanno così o almeno non in modo semplice ed automatico in quanto dato che il metano è di per se un gas serra molto più potente del diossido di carbonio specie su tempi brevi (oltre 80 volte nei primi 20 anni dalla dispersione) e dato che il ciclo produttivo complessivo si calcola ne perda in atmosfera il 2% (nella media mondiale), la sostituzione del metano al petrolio o perfino al carbone può rivelarsi inutile o controproducente; ha molto più senso sostituire direttamente alla generazione fossile una generazione rinnovabile dotata di accumulo.

Finora tuttavia mancava una analisi diretta degli effetti climatici della corsa verso il metano che si è scatenata da alcuni anni a questa parte, specie con il fracking, ossia con lo sfruttamento di quei giacimenti non tradizionali ma diffusi in alcune parti del mondo e che sono localizzati in modo tale che occorre rompere le rocce per estrarre il metano.

Un recente lavoro di R. Howarth pubblicato su Biogeosciences, una delle riviste internazionali più quotate (Biogeosciences, 16, 3033–3046, 2019 https://doi.org/10.5194/bg-16-3033-2019
) chiarisce la questione dell’effetto del metano derivante da attività estrattiva e più in generale dal ciclo produttivo globale, con conclusioni molto pesanti per questo tipo di attività.

Il lavoro è scaricabile da https://www.biogeosciences.net/16/3033/2019/

Come vedremo l’interesse nasce dalle conclusioni ma anche dai metodi sperimentali usati, legati alla analisi isotopica e dunque dalla individuazione dell’origine del metano un problema questo di cui ci siamo occupati altre volte.

Prima di tutto partiamo dai dati sperimentali, che erano già conosciuti da qualche anno e di cui si era tentata una analisi varie volte; sono riportati nel grafico qui sotto ed erano stati publicati in Schaefer, H., Mikaloff-Fletcher, S. E., Veidt, C., Lassey, K. R., Brailsford, G. W., Bromley, T. M., Dlubokencky, E. J., Michel, S. E., Miller, J. B., Levin, I., Lowe, D. C., Martin, R. J., Vaugn, B. H., and White, J. W. C.: A 21st century shift from fossil-fuel to biogenic methane emissions indicated by 13 CH4 , Science, 352, 80–84, https://doi.org/10.1126/science.aad2705, 2016.

(non scaricabile gratuitamente)

Nell’immagine qui sopra i dati di partenza; nel primo grafico la variazione della concentrazione atmosferica del metano che come si vede negli ultimi 35 anni è costantemente aumentata sia pure con un plateau fra 2000 e 2005. Tuttavia la cosa interessante e di cui parleremo oggi è il contrasto con la variazione della composizione isotopica del metano espressa dal secondo grafico nel medesimo periodo. Il grafico riposta in ordinata una quantità denominata δ13C che è definita come segue:

Ossia essa è il rapporto dei rapporti fra le moli dei due isotopi stabili del carbonio nel campione e in un campione standard, meno 1 e moltiplicata per 1000.

Il campione standard è quello di Belemnitella estratto da una specifica formazione geologica, scelto per la sua composizione estremamente ricca in 13C; questo standard si è consumato nel tempo ed è stato poi sostituito da altri ma conservando la continuità di misura.

Il rapporto a sinistra sarà di solito inferiore ad 1 ed avremo dunque di solito dei valori negativi, dell’ordine delle decine, che diventeranno meno negativi quando la frazione dell’isotopo 13 aumenterà rispetto al 12. Se testate un campione di Belemnitella ovviamente avrete numeratore e denominatore uguali con risultato zero. Dunque più negativo vuol dire più lontano dalla Belemnitella, ossia con meno 13C, mentre un valore positivo significherebbe con più 13C dello standard.

I due isotopi sono entrambi stabili (a differenza del 14C) e la differenza di composizione dipende da quello che i chimici chiamano effetto isotopico, ossia dato che i due atomi hanno masse atomiche diverse, il più leggero è anche il più veloce nelle reazioni; la differenza è di circa l’8% ed è dunque significativa.

Per esempio come già notato (in un commento) le piante C3 e C4 ossia le normali e le grasse hanno una composizione isotopica diversa con diverso δ13C. Il grafico seguente mostra il δ13C per diversi tipi di carbonio.

http://wwwchem.uwimona.edu.jm/courses/CHEM2402/Crime/GC_IRMS.html

Nel caso della CO2 il δ13C varia regolarmente durante l’anno come mostrato nel grafico seguente che rappresenta i dati raccolti a Mauna Loa.

I combustibili fossili aggiungono all’atmosfera CO2 che contiene meno 13C. Questa aggiunta è maggiore della quantità di CO2 rimossa dalla biosfera. Il risultato è che il δ13C scende piano piano in corrispondenza dell’aumento di concentrazione della CO2.

L’analisi condotta sui dati del metano è sostanzialmente parallela, ma i valori sono più bassi ancora perché partono già da valori più bassi.

I dati del metano riportati nel grafico di Schaefer prima crescono con la quantità di metano, dunque il metano mentre aumenta in quantità si arricchisce dell’isotopo 13, poi invece dopo il plateau del 2000-2005 mentre il metano continua ad aumentare la quota di 13C diminuisce. Come mai?

I dati sono stati analizzati da almeno due lavori importanti nel 2016 uno pubblicato su Nature e l’altro su Science; quello su Nature è

Schwietzke, S., Sherwood, O. A., Bruhwiler, L. M. P., Miller, J. B., Etiiope, G., Dlugokencky, E. J., Michel, S. E., Arling, V. A., Vaughn, B. H., White, J. W. C., and Tans, P. P.: Upward revision of global fossil fuel methane emissions based on isotope database, Nature, 538, 88–91, https://doi.org/10.1038/nature19797, 2016.

mentre quello su Science lo abbiamo già citato prima.

Entrambi hanno concluso con riguardo al metano che “fossil- fuel emissions have likely decreased during this century and that biogenic emissions are the probable cause of any recent increase in global methane emissions.

Per comprendere bene la frase occorre rifarsi alla definizione delle tre principali componenti di metano emesso:

Biogenico: zone umide, risaie, mucche, discariche

Termogenico: derivante da componenti spontanee dei depositi di combustibili fossili oppure da esplorazione, produzione e attività di miniera.

Pirogenico: risultato di combustione incompleta di combustibili sia naturali che fossili e anche di biocombustibili.

Come si vede c’è un certo intreccio del ruolo antropogenico nelle varie componenti. Dunque la frase del lavoro citato NON esclude l’attività umana; tuttavia tutti e due i lavori non comprendono una analisi dettagliata delle componenti fossili che derivano dalle forme più recenti di estrazione, ossia lo shale gas e lo shale oil; definibili come quelle sorgenti fossili non tradizionali, che invece di essere intrappolate da una zona non pervia ma in ambiti porosi in cui fluiscono liberamente, sono intrappolate DENTRO la roccia e dunque occorre fratturare la roccia per estrarre sia il gas che il petrolio. In assenza di commenti sulla questione shale essi attribuiscono la riduzione dell’isotopo 13 a fonti biogeniche.

Howarth ha invece modellato esplicitamente il contributo del metano provenente dallo shale considerando la letteratura tecnica a riguardo ed inserendo in un modello più completo l’analisi delle emissioni.

Dalla tabella soprastante si vede che i δ13C dei fossili sono simili ma non identici (la punta indica la media). Un modello che consideri le quantità estratte di shale che hanno consentito all’industria estrattiva di superare i valori totali del passato consentono anche di calcolare il contributo a questa grandezza isotopica. E questo è il contenuto di calcolo modellistico del lavoro. Su questa base la conclusione è radicalmente diversa dagli altri due lavori:

We conclude that increased methane emissions from fossil fuels likely exceed those from biogenic sources over the past decade (since 2007). The increase in emissions from shale gas (perhaps in combination with those from shale oil) makes up more than half of the total increased fossil-fuel emissions. That is, the commercialization of shale gas and oil in the 21st century has dramatically increased global methane emissions.

Dunque Howarth dice: attenzione se includiamo le sorgenti shale e il loro contributo con ipotesi semplici ed essenziali la valutazione si rovescia: sono i nuovi fossili a far ridurre la concentrazione di isotopo 13.

Ci sono due considerazioni tecniche che si possono fare a partire da questa conclusione:

1) si parla spesso di “perdite” ma in realtà tali presunte perdite non sono fuggitive, ma rappresentano un modo di funzionare dell’industria estrattiva, di trasporto e di trattamento che sottovaluta questo problema e ci sarebbero in effetti le possibilità tecniche di modificare la situazione, ovviamente con un congruo aggravio dei costi che farebbero così evidenziare come in effetti l’EROEI di tali risorse è molto inferiore a quello stimato senza tali considerazioni. Perfino il semplice deposito di gas naturale può rivelarsi pericoloso climaticamente, come è avvenuto nel caso californiano di Aliso Canyon di cui abbiamo parlato sul blog.

2) nell’ottobre 2018 l’IPCC ha pubblicato un report legato alle conclusioni della COP21 di Parigi nel quale ha fra l’altro notato che il sistema climatico appare reagire più prontamente a riduzioni della componente metano rispetto alla componente CO2, e che tale fenomeno offre dunque la possibilità di avere effetti climatici più rapidi in entrambe le direzioni.

Sulla base dei calcoli di Howarth si può concludere che l’uso del metano non solo NON rappresenta quello che alcuni (compresa l’ENI e parecchi ambienti “ambientalisti”) ritengono, ossia un ponte verso le vere rinnovabili; al contrario l’uso del metano è un rischio ormai chiaro di peggiorare le cose e deve essere evitato con tutte le forze; ovviamente a partire dalla costruzione di inutili infrastrutture relative sia alla sua estrazione che al suo trasporto (come è il caso della TAP).

Il cubo di Rubik chimico

Rinaldo Cervellati 

Come noto al grande pubblico, il cubo di Rubik è un famoso rompicapo 3D (twisty puzzle 3D). E’ stato ideato nel 1974 dall’architetto ungherese Ernő Rubik[1], da cui il nome. Sebbene il cubo di Rubik abbia raggiunto il picco della sua popolarità all’inizio degli anni ’80, è ancora largamente utilizzato. Molti appassionati continuano a confrontarsi in competizioni internazionali nel tentativo di risolvere il cubo di Rubik nel tempo minore possibile e in varie categorie.

Nella C&EN newsletter del 9 agosto scorso, Bethany Halford, col titolo “Rubik’s cube with a chemical twist” [1], informa che un gruppo di ricercatori chimici ha pubblicato una versione chimica del cubo di Rubik [2]. Racconta Halford:

Nel gennaio 2018, Jonathan Sessler[2] (Università del Texas a Austin) era a una riunione che presentava il lavoro svolto dal suo laboratorio realizzando modelli 2D da lastrine di idrogel colorati. Philip A. Gale[3], un chimico dell’Università di Sydney, specializzato in chimica supramolecolare e post-dottorato nel laboratorio di Sessler negli anni 1995-97, lo sfidò a trasformare queste lastrine in un cubo di Rubik. Afferma Gale [1]: “La forma delle matrici di gel di Jonathan mi hanno ricordato la faccia di un cubo di Rubik, mi chiedevo se sarebbe stato possibile costruire un cubo funzionante formato da blocchi di gel che avrebbero potuto essere facilmente riconfigurati”.

Jonathan Sessler e Philip A. Gale

Sessler accettò la sfida e affidò il progetto a Xiaofan Ji ricercatore post-dottorato. Il compito si rivelò una sfida tremenda più del previsto. Ji ha avuto problemi nella sintesi di idrogel con i sei colori necessari per realizzare un cubo di Rubik.

Ben Zhon Tang

Fu solo quando Ji chiese la collaborazione del gruppo del prof. Ben Zhong Tang[4] dell’Università di Scienza e Tecnologia di Hong Kong, che furono scoperti composti che, grazie all’aggregazione, inducevano la fluorescenza quando incorporati in idrogel (AIE Aggegation-Induced Emission), figura 1.

Figura 1. Fotografie di sospensioni acquose di composti AIE (da Da S-1 a S-6: sospensioni blu, verdi, gialle, arancioni, rosse e bianche, rispettivamente) e i corrispondenti idrogel AIE.[2]

Il secondo passo consistette nell’assemblare le lastrine in cubetti con le facce diversamente colorate. Ciò venne realizzato facendo aderire le piastrine fra loro, infatti gli idrogel formano legami incrociati di forza variabile col tempo. Un tempo di contatto di 24 ore garantisce la stabilità della struttura. I cubetti di questi idrogel vennero quindi fatti aderire per 1 ora in una struttura simile a un cubo di Rubik, (RC). Ciò produsse un blocco 3 × 3 × 3 (RC) in cui i singoli blocchi di gel fluorescenti aderiscono debolmente l’uno all’altro. Come conseguenza, è possibile ruotare anche gli strati 1 × 3 × 3 che compongono l’RC orizzontalmente o verticalmente per realizzare nuove forme (figura 2).

Figura 2. Fotografie che mostrano a) la formazione dell’idrogel HG-C attraverso l’adesione macroscopica dell’idrogel HG-0 e degli idrogel AIE HG-1 – HG-6 con ricottura per 24 ore, b) la formazione di un idrogel RC simile a un cubo di Rubik attraverso l’adesione macroscopica per 1 ora di singoli blocchi HG-C di idrogel (3 × 3 × 3), c) idrogel RC fatto rotolare a mano.[2]

La figura 3 mostra le successive rotazioni di 90° su un cubo di Rubick (a sinistra) e il suo analogo chimico (RC) (a destra).

Figura 3 [2]

C’è però un problema: dopo 24 ore, il cubo di Rubik chimico si blocca in quella data posizione. Lo stesso meccanismo che ha permesso al gruppo di ricerca di unire le tessere colorate ha infatti reso il gioco non più giocabile. Dice Sessler: “Fondamentalmente abbiamo realizzato un materiale che, come il gesso di Parigi o l’argilla, nel tempo diventa più duro”.

Anche se ricreare il giocattolo alla moda è stato divertente, Sessler afferma che non è il suo obiettivo finale. Vorrebbe realizzare piastrelle di materiali morbidi e intelligenti che funzionano come i materiali fluorescenti di Tang cambiando colore in presenza di stimoli chimici. Tali piastre potrebbero comunicare informazioni mediche quando vengono posizionati sulla pelle di una persona o guidare robot che eseguono reazioni chimiche, come ad es. una titolazione acido-base.

Infine, ecco il commento di Gale: “È un lavoro elegante e apre un nuovo approccio alla produzione di sensori”, sono lieto che abbiano affrontato la sfida.

Desidero ringraziare Bethany Halford, senior correspondent of ACS C&EN newsletter, per questa notizia che mi ha condotto a approfondire l’argomento sull’articolo originale del gruppo di ricerca cino-americano.

Bethany Halford

Prima di diventare senior correspondent di C&EN, Helford è stata un chimico organico di sintesi, diceva di essere una scultrice su scala molto piccola. Ora scolpisce storie, particolarmente quelle più strane.

Bibliografia

[1] B. Halford, Rubik’s cube with a chemical twist., C&EN news, August 9, 2019.

[2] Xiaofan Ji et al, A Functioning Macroscopic “Rubik’s Cube” Assembled via Controllable Dynamic Covalent Interactions., Adv. Mater. 2019, DOI: 10.1002/adma.201902365

 

[1] Ernő Rubik (1944-) architetto e scultore ungherese, insegna all’Istituto Universitario d’Arte e Design di Budapest.

[2] Jonathan Sessler (1956-), statunitense, è professore di chimica all’Università del Texas ad Austin. È noto per il suo lavoro pionieristico sulle porfirine espanse e le loro applicazioni in biologia e medicina.

[3] Philip Alan Gale (1969-), chimico britannico, è attualmente direttore della School of Chemistry dell’Università di Sydney. È noto per il suo lavoro sulla chimica supramolecolare degli anioni.

[4] Ben Zon Tang, direttore del Dipartimento di Chimica, The Hong Kong University of Science and Tecnology, esperto di polimeri funzionali e di Aggregate-Induced Emission. Il suo gruppo è costituito da 26 ricercatori.

Numeri di ossidazione: fra topologia e meccanica quantistica.

Claudio Della Volpe

Faccio la mia solita premessa; non sono uno specialista del tema di cui vi parlo oggi; sono solo un lettore curioso; potrei commettere errori; e dunque mi aspetto delle “generose” correzioni; diciamo che se ci fossero più colleghi disposti a fare divulgazione ci sarebbero meno errori. Avrei è vero potuto chiedere una intervista ai due colleghi di cui parlo, ma la questione base è il linguaggio da usare; la topologia è astrusa per i fisici, e ancor più per noi chimici. Questo è un tentativo di parlarne a partire da quello che ne sa un povero chimico.

In un recente articolo pubblicato su Nature Physics i due colleghi della SISSA, Federico Grasselli e Stefano Baroni hanno dimostrato che i numeri di ossidazione che usiamo tutti i giorni e che insegniamo agli studenti fin dalla scuola secondaria sono una della grandezze basilari della meccanica quantistica ed hanno natura topologica, sono quantità legate alla topologia del sistema. 

Non temete di trovare quasi incomprensibile perfino l’abstract del lavoro; il nostro linguaggio è diverso da quello dei fisici teorici; cercherò di renderlo più amichevole sia per i meno esperti che per il grande pubblico.

Ad un primo esame potrebbe sembrare che i numeri di ossidazione siano solo l’ennesimo strumento euristico che la Chimica si è inventato e che ne rende possibile una relativa indipendenza dalla Meccanica Quantistica; molti colleghi sottolineano spesso questo aspetto base della Chimica. Ed hanno ragione. La Chimica che conosciamo, che studiamo dalla scuola secondaria e i cui principi base si possono studiare anche alle elementari (il nostro post più letto scritto dalla sempreverde Silvana Saiello: https://ilblogdellasci.wordpress.com/2013/06/06/chimica-alle-elementari/) è uno strumento euristico potentissimo; tuttavia è altrettanto vero che faticosamente la Scienza riscopre che questo strumento euristico è nondimeno profondamente preciso: è la Chimica, bellezza!!

Questo è appunto il caso dei numeri di ossidazione. Ovviamente la Meccanica Quantistica (MQ) è in grado di andare al di là e vedremo quali sono le rivoluzionarie conclusioni dell’articolo di Grasselli e Baroni.

Non temiate di immergevi in queste acque oscure.

Il numero di ossidazione (NO) o di ossidoriduzione ha una definizione empirica: è la differenza tra il numero di elettroni di valenza dell’atomo considerato e il numero di elettroni che ad esso rimangono dopo aver assegnato tutti gli elettroni di legame all’atomo più elettronegativo di ogni coppia. Non esisteva fino a questo punto una definizione ottenibile da principi primi.

Esiste una definizione formale nel Goldbook (http://goldbook.iupac.org/terms/view/O04365), ma si tratta comunque di una definizione empirica che non discende da principi primi:

OS of an atom is the charge of this atom after ionic approximation of its heteronuclear bonds.

Esistono una serie di lavori pubblicati negli ultimi anni che cercano di rispondere al problema se il NO sia una grandezza che possa andare al di là della definizione empirica datane nel GoldBook. Per esempio Inorg. Chem. 2011, 50, 10259–10267 oppure A.J. Webster et al., Polyhedron (2015), http://dx.doi.org/10.1016/j.poly.2015.11.018

In entrambi i casi si usa il concetto dell’occupazione di orbitale; nel secondo lavoro la cosiddetta matrice di occupazione consente di ottenere un autovalore che corrisponderebbe al NO. Nel primo si cerca addirittura di definire un operatore corrispondente ma sempre a partire dalla matrice di occupazione; si tratta comunque di proposte finora non condivise o comunque di proposte che cercano appunto di dare al NO la dignità di quantità basica della MQ. Un altro lavoro che vale la pena di citare per chi se la sente di approfondire e di Jiang e coll. PHYSICAL REVIEW LETTERS 108, 166403 (2012) in cui si affronta il problema di una definizione formale a partire da principi primi del NO ma solo per lo stato solido, mentre il lavoro dei colleghi della SISSA è più generale.

Il lavoro di Grasselli e Baroni scoprendo la natura teorica di questa grandezza fa passare la scoperta euristica ad un livello di concetto teorico.

Per arrivare a capire un po’ la cosa dobbiamo partire dalla topologia, un argomento di cui ci siamo già occupati in altri post (https://ilblogdellasci.wordpress.com/2016/06/13/dai-quadrati-magici-alla-topologia-molecolare-parte-3-wiener/)

 

La topologia o studio dei luoghi (dal greco τόπος, tópos, “luogo”, e λόγος, lógos, “studio”) è lo studio delle proprietà delle figure e delle forme che non cambiano quando viene effettuata una deformazione senza “strappi”, “sovrapposizioni” o “incollature”. (da wikipedia)

Per la topologia una sfera o un cubo sono figure equivalenti o come si dice tecnicamente omeomorfe. Così anche una tazza del caffè ed una ciambella. Una tazza a due manici è equivalente ad una pentolona a due manici od anche ad un otto, mentre un brezel, comune dalle mie parti, equivarebbe ad un mastello a tre manici.

 

Oggetti come una sfera o un cubo sono topologicamente “triviali” mentre non lo sono quelli come una tazza o un brezel. Gli oggetti omeomorfi , cioè che possono essere ridotti l’uno all’altro con modifiche continue si corrispondono in modo “intero”, hanno una caratteristica intera che è loro specifica, per esempio il numero di “buchi” che posseggono; questo numero non può essere modificato in modo graduale, ma solo discontinuo, costituisce una sorta di transizione di fase da un tipo di oggetto all’altro, una transizione topologica (sottolineata nell’immagine sopra dal termine POW). Il numero di buchi può essere definito in modo formale e si chiama genere della superficie.

La topologia non è un astruso argomento matematico, come abbiamo visto per esempio nei post dedicati alla topologia molecolare, la forma delle molecole, l’uso dei grafi nella previsione delle proprietà delle molecole.

La topologia è un argomento che negli ultimi anni è stata ripetutamente presente nelle presentazioni dei Nobel; oltre quella dei Fisici del 2016, possiamo ricordare la presentazione del Chimico Premio Nobel Jean Pierre Sauvage sempre nel 2016 che si intitolava: From Chemical Topology to Molecular Machines

Ma dirò di più. La topologia è una disciplina che applichiamo costantemente ma spesso senza accorgercene; riconoscere il suo ruolo quotidiano provoca un effetto di straniamento.

Per esempio la topologia è lo strumento quando scegliamo un percorso su una mappa della metro, dove non compaiono le informazioni metriche, le distanze, scegliamo un colore che corrisponde ad una certa forma, una certa topologia.

Fare un nodo alle scarpe è un processo topologico in cui le misure esatte non contano, la metrica non conta ma il modo di avvolgere le cose sì.

Molti esseri viventi, compresi noi, hanno la medesima topologia, un tubo digerente, sostanzialmente un toro, non dissimili da un verme che è una delle forme di vita più antiche che si conoscano, ma diverse da una singola cellula.

L’albero dell’evoluzione è una struttura topologica, non metrica.

Passare dalla descrizione della Terra come piatta ad una come sfera è una scelta topologica, o se volete una scoperta topologica.

Colorare le carte geografiche con colori diversi è un problema di topologia (il teorema dei 4 colori).

Dunque la topologia non è una cosa astratta, affatto; comunque non più dell’algebra o di altre parti della matematica.

Entriamo nell’argomento definendo in modo più approfondito un numero quantico topologico: qualunque quantità che prende uno solo di un set finito di valori sulla base di considerazioni topologiche legate al sistema in studio, anche non in casi legati alla meccanica quantistica. Possono essere per esempio numeri che compaiono nelle soluzioni di equazioni del sistema anche differenziali la cui forma dipenda da considerazioni topologiche.

La scoperta e l’analisi di queste quantità ha significato la assegnazione del premio Nobel per la Fisica 2016 a Thouless, Haldane e Kosterlitz.

Si tratta di quantità che a differenza dei comuni numeri quantici NON dipendono dalla simmetria del sistema, sono insensibili a tale simmetria; la simmetria è un fatto “metrico”, dipende dalle misure esatte dell’oggetto, mentre la topologia no. I numeri quantici che conosciamo dipendono dalla simmetria, quelli topologici no.

Quanto sia importante l’approccio topologico si comprende da lavori precedenti quello di cui stiamo parlando per esempio Topological quantum chemistry di Bradlyn e coll, Nature 547, 298 (2017) che tenta di classificare la natura topologica della struttura in bande (di conduzione essenzialmente) di tutti i materiali conosciuti in questo campo (oltre 200.000) suddivisi nei 230 gruppi di simmetria.

Il problema dunque è che i fisici teorici ci stanno indicando una strada (apparentemente) nuova: quanto è importante la topologia nella chimica? E’ un argomento che come blog abbiamo già sfiorato in precedenti post e abbiamo visto che certi aspetti come la previsione di proprietà sono ben consolidati. Qua ne stiamo allargando il ruolo. Personalmente ritengo che la topologia dovrebbe diventare un argomento comune di studio per i neochimici.

Dice Davide Castelvecchi su Le Scienze di qualche anno fa (traducendo un articolo da Scientific American)

Alcune delle proprietà fondamentali delle particelle subatomiche sono intrinsecamente topologiche. Prendiamo, per esempio, lo spin dell’elettrone, che può puntare verso l’alto o verso il basso. Capovolgiamo un elettrone dall’alto verso il basso, e poi ancora verso l’alto: si potrebbe pensare che questa rotazione di 360° riporti la particella al suo stato originale. Ma non è così.

Nello strano mondo della fisica quantistica, un elettrone può essere rappresentato anche come una funzione d’onda che codifica informazioni sulla particella, come la probabilità di trovarla in un determinato stato di spin. In modo controintuitivo, una rotazione di 360° sfasa la funzione d’onda, in modo che le creste e gli avvallamenti si scambiano. Ci vuole un’altra rotazione di 360° per portare finalmente l’elettrone e la sua funzione d’onda ai loro stati iniziali.

Questo è esattamente ciò che accade in una delle stranezze topologiche preferite dai matematici: il nastro di Möbius, che si realizza dando una singola torsione a un nastro e poi incollando tra loro le sue estremità. Se una formica, camminando sul nastro, facesse un giro completo, si troverebbe sul lato opposto rispetto al punto in cui ha cominciato. Deve fare un altro giro completo prima di poter tornare alla sua posizione iniziale.

La situazione della formica non è solo un’analogia per ciò che accade alla funzione d’onda dell’elettrone: si verifica veramente all’interno di uno spazio geometrico astratto fatto di onde quantistiche. È come se ogni elettrone contenesse un minuscolo nastro di Möbius che porta con sé un po’ di topologia interessante. Tutti i tipi di particelle che condividono questa proprietà, quark e neutrini compresi, sono conosciuti come fermioni; quelli che non la condividono, come i fotoni, sono classificati come bosoni.

Torniamo al nostro argomento. L’esempio dello spin chiarisce che le proprietà topologiche possono appartenere allo spazio a cui le funzioni che descrivono il comportamento del sistema si riferiscono, lo spazio delle configurazioni in cui tali funzioni sono definite. E’ un modo di ragionare poco intuitivo ma molto efficiente. Dobbiamo immaginare lo spazio multidimensionale in cui le funzioni d’onda sono definite e considerarne le caratteristiche topologiche, una cosa non banale assolutamente.

Nella parte centrale del lavoro Grasselli e Baroni fanno esattamente questo, ossia analizzano le proprietà dello spazio delle configurazioni delle funzioni d’onda

Quando si studiano sistemi come un sale fuso si usa fare dinamica molecolare di particelle alle quali poi si applica la meccanica quantistica; data la difficoltà di analizzare sistemi con grandi numeri di particelle si usa un trucco contabile che è la periodicità, ossia si usano celle di opportuna dimensione con la proprietà che le traiettorie delle particelle che escono da una parte rientrano dalla parte opposta; ora facendo questo lo spazio fisico studiato è quello euclideo normale, ma lo spazio delle configurazioni delle variabili non lo è; come rappresentato in figura tale spazio delle configuazioni è invece non banale, come quello di un toro (vedi figura). In queste condizioni essi calcolano la conducibilità cosiddetta adiabatica, ossia con trasformazioni che seguono il cosiddetto teorema di Born e Fock che recita (più o meno):

Un sistema quanto meccanico soggetto a condizioni esterne che cambiano gradualmente adatta la sua forma funzionale, ma quando soggetto a condizioni rapidamente variabili e non ha il tempo di adattarsi la densità spaziale di probabilità rimane invariata.

Essi ottengono una espressione (per la cronaca la eq. 11 del lavoro) da cui si conclude che

La conducibilità elettrica adiabatica di un liquido può essere ottenuta esattamente sostituendo nella definizione di conducibilità (ossia la derivata rispetto al tempo del vettore polarizzazione macroscopica del sistema, andatevi a riguardare gli appunti di chimica –fisica 2!!) al cosiddetto tensore di Born o carica di Born di ciascun atomo (che è un numero reale dipendente dal tempo) una carica topologica scalare, che è un intero non dipendente dal tempo, ma solo dalla specie atomica considerata.

Nella seconda parte del lavoro gli autori dimostrano mediante esperimenti numerici che questa carica topologica è equivalente al numero di ossidazione dell’atomo in questione.

E questa ammetterete che è una conclusione eccezionale; senza saperlo noi chimici abbiamo usato la topologia del sistema per valutarne il comportamento e lo abbiamo fatto a partire da un approccio euristico che chiamiamo chimica! Oggi la MQ i dimostra che quel numero è una delle “costanti del moto” di quegli atomi!

Le conclusioni del lavoro sono abbastanza interessanti anche dal punto di vista pratico, dato che in questo modo si risparmia molto tempo di calcolo, non dovendosi più calcolare i tensori di Born; ma lo sono anche per i fenomeni che prevedono.

In particolare, scrivono Grasselli e Baroni (vi lascio la frase intera anche per gustare il modo di scrivere dei fisici teorici):

Our analysis shows that the coexistence of different oxidation states for the same element in the same system may be due to the exis- tence of zero-gap domains in the atomic configuration space that would be crossed by any atomic paths interchanging the positions of two identical ions in different oxidation states. While this sce- nario is probably the most common to occur, a different, more exotic, one cannot be excluded on purely topological grounds and its existence is worth exploring. In fact, when strong adiabaticity breaks, it is possible that two loops with the same winding num- bers could not be distorted into one another without closing the electronic gap, and they may thus transport different, yet integer, charges. While in the first scenario closing the electronic gap while swapping two like atoms would simply determine the chemically acceptable inequivalence of the oxidation numbers of two iden- tical atoms in different local environments, the second scenario would imply the chemically wicked situation where two different oxidation states can be attached to the same atom in the same local environment. As a consequence, one could observe a non-vanishing adiabatic charge transport without a net mass transport (see the discussion in ref. 33)

(sottolineatura mia)

A proposito dell’ultima frase tuttavia devo dire che da chimico che insegna elettrochimica da molti anni questo fenomeno di trasportare carica senza trasportare massa mi sembra ben conosciuto: mi ricorda molto da vicino il meccanismo “al salto” proposto per spiegare la conducibilità di protoni e ioni idrossido in acqua, chiamato spesso meccanismo di Grotthus. In sostanza la struttura elettronica si riarrangia lungo catene di diverse molecole di acqua legate da legami idrogeno e il protone non si sposta ma la sua carica si. Un altro esempio (di cui sono debitore a Vincenzo Balzani) è nella reazione chetoenolica dove succede una cosa analoga: nel 2° step della catalisi acida, la carica si attacca e migra poi da un legame all’altro, questa volta dentro un certa molecola , ma sempre senza spostamento di massa.

Se è così forse la chimica “euristica” ha ancora qualcosa da raccontare alla fisica teorica: chimica e topologia…. (ovviamente a patto di mettersi a studiare).Il meccanismo di Grotthus, notate come la carica migri senza spostamento di massa anche su catene lunghe di molecole di acqua legate da legami idrogeno (se non vedete in azione l’immagine, cliccateci sopra).

Ringrazio Vincenzo Balzani e mia figlia Daniela per gli utili suggerimenti.

Riferimenti:

https://www.lescienze.it/news/2019/07/01/news/spiegazione_quantistica_numero_ossidazione_sissa-4465208/

https://www.reccom.org/2019/05/23/materia-topologica-nuova-fisica/

http://www.lescienze.it/news/2017/07/22/news/strana_topologia_plasma_fisica-3610402/

https://www.nature.com/articles/nature23268

http://www-dft.ts.infn.it/~resta/gtse/draft.pdf   di Raffaele Resta, Questo è un testo ottimo! Ve lo consiglio.

Author(s): Erica Flapan  Series: Outlooks Publisher: Cambridge University Press, Year: 2000  ISBN: 0521664829,9780521664820  When Topology meets Chemistry

Biopiattaforma

Mauro Icardi

Con il nome di “biopiattaforma” è stato dato il via ad un progetto che vede coinvolte le società CAP di Milano (Gestore del servizio idrico integrato nelle province di Milano, Monza-Brianza, Varese e Como) e la CORE Spa che gestiva l’inceneritore di Sesto San Giovanni. Quest’ultimo, giunto al termine del suo periodo operativo, verrà convertito in un impianto di trattamento dei fanghi di depurazione di tutti gli impianti gestiti dal gruppo CAP. Il quantitativo di fanghi trattati sarà di 65.000 tonnellate/anno di fanghi umidi pari a 14.100 tonnellate/anno di fanghi essiccati. Da essi si ricaveranno 11.120 MWh/anno di calore per il teleriscaldamento e fosforo come fertilizzante. Il 75 % dei fanghi verrà convertito in calore, e dal restante 25% sarà ricavato fosforo per il riutilizzo agricolo come fertilizzante. Verrà realizzato anche un impianto per il trattamento della frazione umida dei rifiuti urbani (FORSU) che potrà alimentare i digestori anaerobici che verranno realizzati nell’area dell’ex inceneritore.

Questa linea potrà trattare 30.000 tonnellate/anno di rifiuti umidi (FORSU) per la produzione di biometano. Nell’impianto sarà trattata la FORSU proveniente dai comuni di Sesto San Giovanni, Pioltello, Cormano, Segrate, Cologno Monzese, cioè i cinque comuni lombardi che sono soci di CORE. Il progetto prende spunto da quanto venne già indicato dall’European Enviroment Agency (Agenzia Europea per la protezione ambientale) nel 2011. I rifiuti biodegradabili conferiti in discarica producono metano quando il materiale organico si decompone anaerobicamente. Anche se questo gas serra viene captato e utilizzato per generare energia, gran parte di esso fuoriesce nell’atmosfera dove ha un potente effetto di forzatura climatica. La riduzione della quantità di rifiuti destinati alle discariche è quindi un obiettivo importante delle politiche dell’UE in materia di rifiuti. Tuttavia, il volume dei rifiuti continua ad aumentare in tutta l’UE. Il cittadino medio dell’UE ha prodotto in media 468 kg di rifiuti solidi urbani nel 1995, che sono saliti a 524 kg nel 2008. Tale cifra potrebbe salire a 558 kg pro capite entro il 2020, a meno che non vengano messe in atto politiche efficaci per ridurre la produzione di rifiuti.

L’intera operazione che è al momento giunta alla fase di inizio lavori, è stata condivisa con la cittadinanza dei comuni interessati, e comunque aperta alle considerazioni ed osservazioni tramite un’apposita piattaforma dove si sono potuti esprimere sia i singoli cittadini che le associazioni.

I fanghi con un tenore di secco pari al 22- 27% con un tenore massimo del 40% saranno stoccati in appositi silos. Successivamente avviati verso un pre-essicatore. Il principio di funzionamento è quello di fare aderire un sottile strato di fango disidratato a contatto con una parete metallica molto calda (es. riscaldata sull’altro lato da vapore oppure olio diatermico). In questo modo la parte di acqua ancora contenuta nei fanghi disidratati evapora molto rapidamente ed il tempo di contatto del fango con la parete calda determina la percentuale di acqua evaporata. Una parte del calore utilizzato per il pre-essiccamento dei fanghi potrà essere recuperato condensando i vapori generati dal processo di essiccamento dei fanghi stessi.

I vapori di processo derivanti dal pre-essiccamento del fango verranno avviati verso un trattamento di deodorizzazione, passando attraverso una torre di lavaggio, che ha il compito di abbattere tutte le sostanze incondensabili ancora presenti nei vapori stessi e responsabili dei cattivi odori. Solo dopo questa fase i vapori saranno scaricati in atmosfera. Il trattamento termico dei fanghi sarà effettuato con impianto a letto fluido. La parte superiore dell’impianto costituisce la camera di post- trattamento, nella quale, in condizioni altamente turbolente, ha luogo la completa ossidazione delle componenti organiche del fango da trattare. Una volta abbandonata la camera di post- trattamento, i fumi verranno raffreddati in una prima sezione di recupero energetico, destinata al preriscaldamento dell’aria di trattamento. Dopo questa prima sezione di recupero energetico il calore ancora contenuto nei fumi verrà recuperato in una seconda sezione di recupero termico, dove sarà utilizzato per produrre vapore. A valle di questa sezione sarà costruita la sezione di trattamento fumi, composta da varie fasi di trattamento. I fumi di combustione attraverseranno un ciclone, dove verrà realizzato il trattamento di depolverizzazione grossolana. Successivamente un reattore dove si realizzerà la desolforazione, e l’abbattimento dei microinquinanti attraverso il passaggio su carboni attivi. I passaggi successivi del trattamento dei fumi saranno il passaggio attraverso filtri a maniche, e l’abbattimento degli ossidi di azoto su un catalizzatore (Ossido di titanio o di vanadio).

Da questa linea di trattamento dei fanghi sarà ceduto calore al sistema di teleriscaldamento del comune di Sesto San Giovanni.

Per quanto riguarda il trattamento della FORSU si effettuerà un pretrattamento dei rifiuti, che consisterà nella rimozione di materiale estraneo ( es (plastiche, sabbie, vetri, ossa) e la massa sarà omogenizzata fino a produrre un materiale adatto all’alimentazione dei due digestori anaerobici. La cosiddetta “polpa”, cioè la frazione umida omogeneizzata verrà stoccata in serbatoi polmone, per alimentare in continuo i digestori. Questa continuità di alimentazione è uno dei fattori più importanti per la conduzione corretta del processo di digestione. Il biogas prodotto sarà purificato dalla CO2 e dell’H2S tramite adsorbimento fisico (setacci molecolari). In sostanza il biogas pressurizzato a 4-7 bar viene introdotto in una unità di adsorbimento dove il setaccio molecolare, generalmente costituito da carbonio o zeolite, adsorbe i gas di scarico. Avendo il biometano un grado di adsorbimento inferiore agli altri gas contenuti nel biogas, la maggior parte di quest’ultimo supera il setaccio molecolare e viene avviato allo stoccaggio. Una parte del biometano prodotto verrà immesso nella rete di distribuzione locale, mentre la rimanente parte verrà compressa ed utilizzata per il rifornimento degli automezzi di servizio. Importante ricordare che il biometano purificato dai composti odorigeni presenti normalmente in esso quali composti organici volatili, aldeidi e chetoni, dovrà essere nuovamente odorizzato, con tetraidrotiofene o miscele di mercaptani. Sembra un controsenso, ma è necessario visto che sarà immesso nelle reti di distribuzione, essendo il metano puro completamente inodore.

La strategia come si vede è quella di trasformare gli impianti di depurazione in strutture a maggior complessità tecnica, ma dalle quali si possano recuperare nutrienti e materia dai residui di valorizzazione dei fanghi e della frazione organica dei rifiuti. In questo modo si potranno recuperare prodotti quali fosforo principalmente ma anche bio-polimeri, cellulosa ed azoto. In modo da trasformare i depuratori urbani in impianti di recupero, con forti impatti positivi economici e sociali, oltre che ambientali.

Negli anni mi sono molto appassionato al tema. E vedo questo progetto in corso di realizzazione come un notevole passo in avanti verso la realizzazione di filiere di economia circolare. Altrimenti sarebbe un’intollerabile spreco di risorse che ancora si possono recuperare dagli impianti di trattamento acque.

Link di approfondimento

http://www.biopiattaformalab.it/progetto-di-simbiosi-industriale/#materiali

https://www.eea.europa.eu/highlights/big-potential-of-cutting-greenhouse?&utm_campaign=big-potential-of-cutting-greenhouse&utm_medium=email&utm_source=EEASubscriptions

https://ilblogdellasci.wordpress.com/2017/05/19/un-tema-emergente-depuratori-come-bioraffinerie/

Elementi della tavola periodica: Silicio, Si.

Rinaldo Cervellati

Silicio (Silicon)*

*Silicon è la versione inglese del termine Silicio. La sua assonanza con la parola “silicone” ha dato luogo a numerose, talvolta divertenti “bufale” mediatiche, sintomo purtroppo di ignoranza chimica dei giornalisti nostrani. Ne ho parlato nel post Silicio, siliconi e dintorni del 12/09/2016

Il Silicio è l’elemento n. 14 della Tavola periodica, ed è il secondo elemento per abbondanza (27,7%) nella crosta terrestre. Nella Tavola si trova collocato sotto il Carbonio con il quale condivide diverse analogie come la tetravalenza (numero di ossidazione +4) e la possibilità di formare lunghe catene, ad esempio:

Ciò ha quasi certamente influenzato gli scrittori di fantascienza che hanno immaginato pianeti basati sul silicio al posto del carbonio, ed esseri extraterrestri con organismi al silicio. Tuttavia oggi si ritiene praticamente impossibile o quantomeno pochissimo probabile un tale evento (v. nota in corsivo).

Invece è quasi certo che il nome silicio derivi dal latino silex o silicis che letteralmente si traduce in selce. Il silicio non si trova in natura libero, ma si presenta principalmente come diossido (SiO2) e come silicati.

Sabbia, quarzo, cristallo di rocca, ametista, agata, pietra, diaspro, opale, ecc. sono alcune delle forme in cui appare il diossido (o biossido) di silicio. Alcune di esse, in forma cristallina, sono classificate pietre semipreziose. Da sinistra a destra: sabbia, quarzo, ametista, opale (lavorato)

I silicati sono la classe di minerali caratterizzati dalla presenza del gruppo tetraedrico (SiO4)4−:

Struttura dell’unità tetraedrica dei silicati.

Ossigeno e silicio sono gli elementi più abbondanti della crosta terrestre, il che rende i silicati i minerali più diffusi sul nostro pianeta. Si trovano all’interno di rocce magmatiche (es. granito), metamorfiche (es. vesuvianite) e sedimentarie (es. argillite).

Il granito è un insieme dei minerali quarzo (SiO2), feldspati e miche (silicati di potassio, sodio, calcio e altri).

La vesuvianite è un sorosilicato costituito da silicati di calcio, magnesio e alluminio.

L’argillite è costituita da caolinite, montmorillonite, silicati idrati di alluminio.

Differiscono sia per il numero di unità tetraedriche e per il modo in cui queste sono legate fra loro, il che ne determina la struttura.

Da sinistra a destra: granito, vesuvianite e argillite

Quando la cella elementare contiene solo l’unità tetraedrica SiO24- ripetuta n volte il minerale corrispondente è l’olivina (silicato di ferro e magnesio (Mg, Fe)2SiO4).

Olivina

Il silicio è anche il componente principale di una classe di meteoriti noti come “aeroliti” ed è pure componente della tectite, un vetro naturale di origine incerta.

Humphry Davy[1] nel 1800 fu il primo a ritenere che la silice fosse un composto e non un elemento. Più tardi, nel 1811, Gay Lussac[2] e Thenard[3] probabilmente prepararono il silicio amorfo impuro riscaldando il potassio con tetrafluoruro di silicio. La sua scoperta è generalmente attribuita a Berzelius: nel 1824 riuscì a preparare il silicio amorfo con lo stesso metodo usato dai due chimici francesi, ma purificò il prodotto rimuovendo i fluorosilicati mediante ripetuti lavaggi.

Nel 1884 Deville[4] ottenne per la prima volta silicio cristallino, la seconda forma allotropica di questo elemento.

Silicio cristallino e amorfo: immagini (sopra) e strutture (sotto)

Il silicio è un non metallo, nella sua forma cristallina ha un colore grigio e lucentezza metallica, ma il colore può variare. È relativamente inerte, reagisce con gli alogeni (fluoro, cloro) e con gli alcali. Non è attaccato dagli acidi, tranne che dall’acido fluoridrico. È un ottimo semiconduttore.

Il silicio è preparato commercialmente per riscaldamento della silice a elevato grado di purezza, in una fornace elettrica usando elettrodi di carbonio. A temperature superiori a 1900 °C il carbonio riduce la silice a silicio (in linguaggio chimico: SiO2 + C ® Si + CO2). Il silicio liquido si raccoglie sul fondo della fornace, viene quindi prelevato e raffreddato. Il silicio prodotto con questo processo è chiamato silicio di grado metallurgico ed è puro al 98%.

Per ottenere un più elevato grado di purezza, necessario ad es. per dispositivi elettronici a semiconduttore, è necessario praticare un’ulteriore purificazione, ad esempio con il metodo Siemens, che consiste nel far reagire il silicio metallurgico con acido cloridrico, chimicamente:

Si + 3HCl –> SiHCl3 + H2 (1)

Il composto ottenuto, un gas chiamato triclorosilano, viene fatto condensare e successivamente distillato accuratamente. A questo punto viene fatta la reazione inversa della (1):

SiHCl3 + H2 –> Si + 3HCl (2)

Il silicio policristallino che si ottiene dalla reazione (2) può raggiungere una purezza maggiore del 99,99%.

Per ottenere monocristalli ancora più puri, si ricorre al processo Czochralski[5], una tecnica che permette di ottenere la crescita di monocristalli di estrema purezza, oggi impiegata principalmente nella crescita di blocchi monocristallini di silicio che si ottengono sottoforma di pani cilindrici che raggiungono la purezza del  99.9999999%.

La principale applicazione odierna del silicio dipende dalla sua proprietà di semiconduttore intrinseco o puro. Per aumentarne questa caratteristica viene “drogato” con piccole quantità di arsenico, fosforo, gallio o boro. Viene utilizzato in transistor, pannelli o celle solari, praticamente in tutte le apparecchiature a semiconduttori, utilizzate in elettronica e nelle altre applicazioni a alta tecnologia.

Diodo LED (a sinistra), pannello solare (a destra)

Poiché il silicio è il principale semiconduttore di tutta l’industria elettronica, la regione Silicon Valley, California, USA, nota per le numerose aziende di informatica ed elettronica, prende il suo nome da questo elemento: Valle del Silicio in italiano.

Il silicio è inoltre un costituente di alcuni tipi di acciai; il suo limite di concentrazione è del 5%, poiché oltre si ha un notevole abbassamento della resilienza a causa del potenziale di accrescimento della grana cristallina. Rende inoltre possibile separare la grafite negli acciai anche già a partire da concentrazioni di carbonio maggiori di 0,50%. All’1-2% è presente negli acciai per molle, dove ne accresce il limite elastico, avvicinandolo a quello di rottura.

Acciaio al silicio

Il biossido di silicio, nelle sue forme di sabbia (granuli da 0.06 a 2 mm) e di argilla (sedimento non solidificato con granuli inferiori a 2 μm), è impiegato da tempi immemorabili come materiale per l’edilizia. Il componente principale del cemento Portland è la silice della sabbia, che è anche il componente principale del vetro.

In forma di pietra lavorata (selce) è un’importantissima testimonianza dei primi insediamenti umani. Le tecniche lavorative, in particolare la scheggiatura, consentono di individuare diversi periodi della preistoria. L’uso è continuato fino a periodi relativamente recenti. Nel XVII secolo era ancora adoperata, specialmente presso i popoli delle Americhe, per fabbricare coltelli e punte di frecce. La selce, come pietra focaia, è stata fondamentale anche per il funzionamento degli acciarini manuali almeno dall’alto medioevo e, dal XVII al XIX secolo, anche per far scintillare i meccanismi di accensione delle armi da fuoco, fino all’avvento delle armi a percussione.

Silice e silicati sono la base dei materiali refrattari usati nei forni e fornaci per elevate temperature, i silicati sono impiegati anche nella fabbricazione di terraglie e smalti.

Il composto binario fra silicio e carbonio, carburo di silicio (SiC), chiamato carborundum, è usato come potente abrasivo.

Anche se, come già ricordato, dei siliconi ho parlato in un precedente post, vale la pena ricordarli di nuovo per l’importanza che hanno anche nella nostra vita quotidiana.

I siliconi, noti anche come polisilossani, sono polimeri che includono qualsiasi composto sintetico costituito da unità ripetitive di silossano, che è una catena di atomi di silicio alternati ad atomi di ossigeno (⋯–Si–O–Si–O–Si–O–⋯) combinata con carbonio, idrogeno e talvolta altri elementi. Sono in genere resistenti al calore, liquidi o gommosi, e sono utilizzati in sigillanti, adesivi, lubrificanti, utensili da cucina e come isolanti termici ed elettrici. Alcune forme comuni includono olio di silicone, grasso al silicone, gomma siliconica, resina siliconica e mastice siliconico.

Molteplici usi dei siliconi

Per la sua elevata biocompatibilità il silicone, nella sua forma gel, è utilizzata in bende e medicazioni, protesi mammarie, impianti testicolari, protesi pettorali, lenti a contatto e una varietà di altri usi medici. Tuttavia occorre ricordare che iniezioni di silicone prive di stretto controllo medico o addirittura illecite inducono sempre una diffusione cronica e definitiva nel sangue con complicazioni dermatologiche che provocano gravi effetti collaterali.

La gestione del fine vita dei pannelli fotovoltaici al silicio

I rifiuti di celle solari sono destinati ad aumentare drasticamente nei prossimi decenni a causa dei milioni di pannelli solari installati ogni anno, ciascuno con una durata limitata di circa 25 anni. Alla luce di ciò, la direttiva sui rifiuti di apparecchiature elettriche ed elettroniche (RAEE) impone il riciclaggio ai produttori di pannelli solari. La fabbricazione di nuovi pannelli utilizzando componenti riciclati non solo manterrà la credibilità del settore dell’energia solare, ma ne ridurrà anche il costo in modo significativo.

Molte tecnologie attuali per riciclare il silicio delle celle solari implicano la rimozione degli strati sottili di silicio dal pannello. Una volta rimossi questi strati sono trattati con acido fluoridrico per eliminarne le impurezze. Oltre ad essere dannoso per l’ambiente, l’acido fluoridrico lo è per i lavoratori perché può penetrare nei tessuti umani causando gravi ustioni che possono portare anche alla morte.

Recentemente un gruppo di ricercatori sud coreani ha proposto un metodo eco sostenibile per il riciclaggio degli strati di silicio dai moduli fotovoltaici a fine vita senza l’impiego di acido fluoridrico [1]. In breve, dopo il recupero dello strato sottile di Si non danneggiato, l’eliminazione delle impurità procede nelle seguenti tre fasi: (i) recupero dell’elettrodo d’argento utilizzando acido nitrico (HNO3); (ii) rimozione meccanica del rivestimento antiriflesso, dello strato di emettitore e della giunzione p-n simultaneamente; (iii) rimozione dell’elettrodo di alluminio usando idrossido di potassio (KOH). In dettaglio, ecco lo schema del processo:

Schema del processo proposto in [1]

I ricercatori coreani affermano che gli strati sottili di Si così rigenerati mostrano proprietà quasi identiche a quelle degli strati vergini commerciali, e che le celle fabbricate con gli strati rigenerati mostrano un’efficienza equivalente a quella delle celle iniziali.

Un recentissimo report sulle tecniche di riciclaggio dei moduli fotovoltaici è stato pubblicato dall’International Energy Agency IEA [2].

Riciclo materiali siliconici

Esistono oggi diverse ditte specializzate nel riciclo di materiali siliconici, dagli oli, gel e schiume alle gomme indurite e molli, a stampi esauriti, prodotti divenuti obsoleti come tubi, nastri e tessuti trattati con silicone. Tutti i processi messi in atto per il riciclo terminano con la depolimerizzazione per recuperare i monomeri dei siliconi. Questi monomeri recuperati sono poi utilizzati per ottenere nuovi prodotti.

Negli Stati Uniti, la ECO U.S.A. è il principale riciclatore al mondo di siliconi come gomma siliconica. I suoi impianti di riciclaggio trasformano i rifiuti di gomme siliconiche in silicone fluido che è riciclato per fabbricare nuovi prodotti.

In breve, le fasi del processo ECO USA sono: 1. Raccolta dei rifiuti da produttori e consumatori; 2. Frantumazione dei rifiuti in piccoli pezzi da 10-15 mm.; 3. Riscaldamento a temperature elevate del granulato in opportune camere di reazione su vasta scala dove i vapori di silicone sono raccolti e filtrati, ottenendo il monomero dimetilcicloossisilano (DMC); 4. Il DMC passa attraverso un complesso processo di filtrazione e raffinazione chimica che produce un fluido siliconico di elevata purezza pronto per essere riciclato.

Ruolo Biologico

Sebbene il silicio sia facilmente disponibile sotto forma di silicati, pochissimi organismi lo usano direttamente. Le diatomee, i radiolari e le spugne silicee usano la silice biogenica come materiale strutturale per i loro scheletri. Nelle piante più avanzate, i fitoliti di silice (phytoliths opalici) sono corpi microscopici rigidi presenti nelle loro cellule. Alcune piante, ad esempio il riso, hanno bisogno di silicio per la loro crescita. È stato infatti dimostrato che il silicio migliora la resistenza delle pareti cellulari vegetali e l’integrità strutturale in alcune piante.

Vi sono anche alcune prove del fatto che il silicio è importante per il corpo umano, ad es. per unghie, capelli, ossa e tessuti cutanei. L’organismo umano ne contiene in totale una quantità stimata sui 250 milligrammi.  Studi clinici hanno dimostrato che l’assunzione di silicio dietetico aumenta la densità ossea nelle donne in premenopausa e che l’integrazione con silicio può aumentare il volume e la densità ossea nei pazienti con osteoporosi.

Integratore al silicio per ossa, unghie e capelli

Il silicio è necessario per la sintesi di elastina e collagene, contenuti in gran quantità nell’arteria aorta. Ciononostante, è difficile stabilire la sua essenzialità, perché il silicio è molto comune, e quindi i sintomi di carenza sono difficili da riprodurre. Un eccesso di silicio può invece causare emolisi dei globuli rossi e alterazioni cellulari come conseguenza diretta. La medicina erboristica, comunque, non raccomanda una fitoterapia a base di piante troppo remineralizzanti (in particolare quelle ricche di silicio) quando sono presenti lesioni ossee di tipo degenerativo (ad esempio artrosi). Assumere i silicati “organici” tramite la dieta non è tuttavia difficile. Il silicio è abbondante nell’acqua potabile, nelle cipolle, nei cavolfiori, nei fagioli, nei piselli, nelle mele e nelle fragole.

Ciclo Biogeochimico

In figura è rappresentato un diagramma di tale ciclo, tratto da [3].

Ciclo biogeochimico del silicio

Il diagramma è diviso in cinque parti: al centro la biosfera, circondata da atmosfera (in alto), litosfera e idrosfera ai lati sinistro e destro rispettivamente. La quantità totale del silicio in una sfera (ad es. litosfera) è data in kg e il numero è sottolineato. La velocità di trasferimento (flusso o tasso di scorrimento) da una sfera a un’altra è riportata in termini di kg l’anno (kg/y) e il valore è inserito in una freccia che mostra la direzione del flusso. Sono anche indicati i nomi dei principali composti o minerali coinvolti nei flussi. Poiché le attività umane (antropogeniche) oggi trasferiscono quantità di silicio a tassi significativi, questi trasferimenti antropogenici sono evidenziati da una linea tratteggiata attraverso la biosfera.

I dati quantitativi riportati sono stime basate su dati noti relativi alla composizione elementare di acqua di fiume, acqua di mare, di alcuni organismi rappresentativi (in questo caso diatomee, radiolari spugne) e le quantità totali nella crosta terrestre, nell’acqua di mare, nella biosfera, ecc.

Tali dati possono essere considerati accurati entro più o meno un ordine di grandezza [3].

Desidero infine precisare che poiché l’impatto delle attività antropogeniche può alterarli, lo studio dei cicli biogeochimici degli elementi è oggetto di continui aggiornamenti e revisioni.

Opere consultate

CRC, Handbook of Chemistry and Physics, 85th, p. 4-28-29

https://en.wikipedia.org/wiki/Silicon

https://it.wikipedia.org/wiki/Silicio

Bibliografia

[1] J. Park et al., An eco-friendly method for reclaimed silicon wafers from a photovoltaic module: from separation to cell fabrication., Green Chem., 2016, 18, 1706-1714.

[2] IEA, End of Life Management of Photovoltaic Panels: Trends in PV Module Recycling Technologies, pdf scaricabile al link http://www.iea-pvps.org/index.php?id=459

[3] V. Cilek (a cura di), Earth System: History and Natural Variability – Volume IV, UNESCO-EOLSS, 2009, pp. 230-232.

[1] Sir Humphry Davy (1778 – 1829) è stato un chimico della Cornovaglia (Inghilterra), noto per aver isolato, usando l’elettricità, una serie di elementi per la prima volta: potassio e sodio nel 1807; calcio, stronzio, bario, magnesio e boro l’anno successivo, oltre a scoprire la natura elementare del cloro e dello iodio. Ha anche studiato le forze coinvolte in queste separazioni, gettando le basi dell’elettrochimica. Scoprì anche le proprietà anestetiche del protossido d’azoto (ossido di diazoto N2O) usato poi come anestetico in chirurgia.

[2] Joseph Louis Gay-Lussac (1778 – 1850) fisico e chimico francese, conosciuto sopratutto per le leggi sul comportamento dei gas (Prima e Seconda legge di Gay-Lussac). Compì diversi esperimenti sulla composizione chimica dell’atmosfera terrestre e sulle variazioni nel campo magnetico terrestre con alcuni aerostati riempiti di idrogeno.

[3] Louis Jacques Thénard (1777-1857), chimico francese. Le sue ricerche spaziarono dai composti di arsenico e antimonio con ossigeno e zolfo agli eteri, acidi sebacici e alla bile. Nel 1818 scoprì il perossido di idrogeno. Nel 1810 ottenne la cattedra di chimica all’Ecole Polytechnique e alla Faculté des Sciences. Thénard era un eccellente insegnante; come lui stesso disse: il professore, gli assistenti, il laboratorio: tutto deve essere sacrificato agli studenti. Come la maggior parte dei grandi maestri pubblicò un libro di testo, il Traité de chimie élémentaire, théorique et pratique (4 voll., Parigi, 1813-16), che è servito come modello per un quarto di secolo. Il suo nome è uno dei 72 iscritti nella Torre Eiffel.

[4] Henri Étienne Sainte-Claire Deville (1818 – 1881) è stato un chimico francese, allievo di Thénard, è noto per le sue importanti ricerche sull’alluminio.

[5] Il processo prende il nome dal chimico polacco Jan Czochralski (1885-1953) che lo mise a punto nel 1916.

Regolare le nanoparticelle.

Luigi Campanella, già Presidente SCI

La strada da percorrere per una gestione sicura dei nanomateriali è ancora molto lunga: La commissione europea, tuttavia, grazie al regolamento REACH pone i primi paletti per poter raccogliere quanti più dati scientifici possibili intorno a questa nuova tipologia di sostanze. Le aziende europee sono chiamate, infatti, già dal 1 gennaio 2020, ad attivarsi per poter rispondere a questo nuovo obbligo di legge.

E. Boscaro, L.Barbiero, G. Stocco (Normachem) su Ambiente & Sicurezza sul lavoro n. 3 / 2 0 1 9 (https://www.insic.it/Salute-e-sicurezza/Notizie/Su-AmbienteSicurezza-sul-Lavoro-n3-2019-si-parla-di/196f8ca4-01a9-405b-92cc-c239f0cc48a2) affrontano l’inquadramento legale delle “nanoforme”, analizzano i riferimenti ai nanomateriali all’interno del Testo Unico di Sicurezza e soprattutto le difficoltà, i limiti e le sfide per i valutatori del rischio e per i datori di lavoro, cercando di fornire alcune indicazioni pratiche su come gestire il rischio correlato all’uso di nanomateriali e di conseguenza come definire le misure di gestione del rischio più corrette per tutelare la salute e la sicurezza dei lavoratori.

Negli ultimi decenni, grazie all’enorme progresso scientifico, si sono fatti sempre più largo prodotti contenenti “nanoforme” e “nanotecnologie”. Sul mercato europeo sono già presenti numerosi prodotti conteneti nanomateriali (ad esempio farmaci, batterie, rivestimenti, indumenti antibatterici, cosmetici e prodotti alimentari). La presenza di particelle nanostrutturate conferisce molto spesso al prodotto finito caratteristiche di alta prestazione con risultati a volte “strabilianti”. Però, come spesso succede in questi casi, l’aspetto commerciale ha di gran lunga preceduto la valutazione di quale potrebbe essere l’effetto di queste sostanze sull’uomo e sull’ambiente.Immagini al microscopio elettronico TEM (a, b, e c) di particelle di silice mesoporosa con diametro esterno medio: (a) 20nm, (b) 45nm, e (c) 80nm. Immagine (d) dal microscopio elettronico SEM corrispondente a (b). Gli inserti ad alto ingrandimento sono di una particella di silice mesoporosa da https://it.wikipedia.org/wiki/Nanoparticella

Per capire però di cosa stiamo trattando, bisogna andare a leggere la definizione di nanomateriale.
L’unica definizione legalmente riconosciuta a livello nazionale ed europeo è quella prevista dalla raccomandazione europea la quale recita al punto 2.

Con “nanomateriale” s’intende un materiale naturale, derivato o fabbricato contenente par ticelle allo stato libero, aggregato o agglomerato, e in cui, per almeno il 50% delle particelle nella distribuzione dimensionale numerica, una o più dimensioni esterne siano comprese fra 1 nm e 100 nm.

In deroga al punto 2 i fullereni, i fiocchi di grafene e i nanotubi di carbonio a parete singola con una o più dimensioni esterne inferiori a 1nm dovrebbero essere considerati nanomateriali.
Diversamente dai prodotti chimici a cui il mondo scientifico e produttivo è sempre stato abituato, i nanomateriali hanno rivoluzionato il modo di pensare in quanto le proprietà chimiche che dimostrano, a causa delle loro estreme dimensioni, sono spesso diverse o addirittura diametralmente opposte a quelle previste dai rispettivi materiali “in forma massiva”.https://www.puntosicuro.it/sicurezza-sul-lavoro-C-1/tipologie-di-contenuto-C-6/valutazione-dei-rischi-C-59/nanomateriali-cosa-deve-includere-la-valutazione-dei-rischi-AR-18981/

 

Elementi della tavola periodica: Ferro, Fe. 2. L’uomo d’acciaio.

Claudio Della Volpe

(la prima parte di questo post è qui)

Il ferro e l’acciaio, due materiali che hanno cambiato la nostra storia, che hanno dato il nome a personaggi della fantasia e della politica: Iron man e l’uomo d’acciaio (Superman) oppure Stalin (in russo Stahl (сталь) vuol dire acciaio) e la frase di Bismarck, “Eisen und Blut”, ferro e sangue, sui destini della Prussia e della Germania*, prodromo della guerra franco-tedesca e della supremazia della Germania in Europa.

Il ferro è anche un protagonista letterario; ricordo qui un romanzo poco conosciuto di uno dei grandi scrittori americani, Jack London; noi tutti lo conosciamo per i romanzi d’avventura del grande Nord, ma (dato che mio padre era un suo estimatore, lo conosco meglio della media) per me Jack London, di idee socialiste fu anche uno scrittore oggi si direbbe di fantascienza, science fiction, descrivendo mondi distopici del futuro in cui lo scontro sociale si sviluppa ai massimi livelli, come in Il tallone di ferro (The Iron Heel) un romanzo sulla lotta sociale portata all’estremo della rivoluzione mondiale.

Ma potrei ricordare La maschera di ferro di Alessandro Dumas, il poema Cold Iron di Rudyard Kipling (l’autore de Il libro della Jungla) o la poesia italiana dal Dante che cuce le palpebre degli invidiosi col filo di ferro (Dante Alighieri canto XIII Purgatorio)

E come a li orbi non approda il sole,
così a l’ombre quivi, ond’io parlo ora,
luce del ciel di sé largir non vole;

ché a tutti un fil di ferro i cigli fóra
e cusce sì, come a sparvier selvaggio
si fa però che queto non dimora.

a Salvatore Quasimodo:

……..
E il vento s’è levato leggero ogni mattina
e il tempo colore di pioggia e di ferro
è passato sulle pietre,
sul nostro chiuso ronzio di maledetti.
Ancora la verità è lontana.
…..

(da Colore di pioggia e ferro, 1949).

Ricordo anche da ragazzo che a Napoli conoscevo “o’ scemo e’ fierro”; non sapete cosa è lo scemo di ferro?

Beh la prima ferrovia italiana fu la Napoli-Portici e negli anni seguenti ci furono molte altre ferrovie nella Campania ottocentesca; la società che costruì molte delle altre ferrovie campane era “Compagnie des Chemins de Fer du Midi de l’Italie”; e dunque nella fertile lingua napoletana, o’ scemo e’ fierro, divenne il nome del treno.

Insomma il ferro è presente fortemente nel nostro immaginario

Come raccontato altrove, si suppone oggi che i primi manufatti in ferro risalgano a 5000 anni fa, 3000 aC, ma si trattava di ferro prevalentemente meteoritico; occorrerà aspettare altri 2000 anni perchè il ferro divenga un bene relativamente comune ed estratto dai suoi minerali.

Abbiamo detto nella prima parte del post che il ferro, a causa della crisi dell’ossigeno di un paio di miliardi di anni fa, si ritrova nella crosta in forma ossidata e dunque la tecnologia di estrazione consiste in una riduzione (si veda la nota in fondo).

La tecnologia della riduzione arrivò in Europa dall’esterno; era diffusa nel 1200aC già in India e nell’Africa sub-sahariana e solo successivamente fu importata nel Mediterraneo dove il bronzo dominava ancora.

Data l’importanza della lega ferro-carbonio diamo un’occhio al diagramma di fase di questa lega:

Da questo grafico vediamo che l’ossido di ferro diventa ferro metallico a temperature molto più basse della fusione che avviene a 1539 °C . Dato che una temperatura così alta è stata a lungo impossibile da raggiungere con i mezzi disponibili il ferro si è ottenuto allo stato solido in forma di spugna porosa, spesso ricca di impurità.

La linea verticale tratteggiata più a sinistra (0.8%) separa il cosiddetto ferro dolce dall’acciaio, che rimane tale fino alla successiva (circa 2%); oltre abbiamo la ghisa con una elevata percentuale di carbonio. Quest’ultimo materiale è fragile e non resisterebbe ai trattamenti che si usavano per purificare il ferro, che consistevano essenzialmente di martellature. L’acciaio mostra proprietà intermedie, è più resiliente e soprattutto si può temprare a caldo, dote ideale per ottenere il bordo affilato, caratteristica primaria di uno strumento da taglio efficace. La tempratura consiste nella brusca riduzione della temperatura che inibendo la diffusione trasferisce a temperature inferiori la struttura caratteristica di quelle superiori.

Il trattamento per martellatura dà il nome al materiale, wrought iron, da una deformazione di “worked” lavorato, in italiano ferro battuto, una massa semifusa di ferro con una bassissima percentuale di carbonio, meno dello 0.1%, ma con una più consistente di impurezze di silice, calcio ed alluminio (fino al 2%) che si rendono visibili meglio al punto di rottura e che vengono espulse tramite azioni meccaniche da forze umane o animali o nei grandi mulini a vento o ad acqua finchè il ferro è ancora caldo (come dice il proverbio: batti il ferro finché è caldo, e dunque può essere purificato, dopo quando la temperatura scende non riesci più ad ottenere il medesimo effetto da cui il senso agisci in tempo finchè puoi). Produrre il ferro era una attività delicata e complessa.

La fornace che parte da minerali di ferro e li mescola con carbone di varia origine viene portata in temperatura mediante l’azione di mantici che soffiano aria, producendo la parziale ossidazione del carbonio ad ossido di carbonio, CO, che è un potente agente riducente gassoso che penetra in una massa compatta contenuta di solito in una materiale resistente alla temperatura, come l’argilla a sua volta almeno parzialmente immersa nel terreno da cui il nome comune di “basso fuoco”..

http://astratto.info/archeometallurgia-e-produzione-metallurgica-nella-storia.html?page=2

https://www.vitantica.net/2017/10/23/siderurgia-antica-i-forni-dell-eta-del-ferro/

Struttura di un “basso fuoco”.

Con l’espressione cast iron invece si indica la lega di Fe-C fra il 2 e il 4% con sempre una certa quantità di silicio; i primi esemplari di questa lega si trovano in Cina nello Jiang-tse e risalgono al 5 secolo aC; erano già allora usati per oggetti che non devono sopportare urti, per esempio nelle costruzioni; di cast-iron cioè di ghisa era fatto il primo ponte europeo in ferro, costruito nel 1770 da Abraham Darby III.

Ironbridge, sul fiume Severn, il più lungo fiume inglese, vicino a Coalbrookdale.

La tecnologia di produzione del ferro e dell’acciaio si è costantemente perfezionata fino allo stadio moderno che risulta notevolmente sofisticato.

Il classico modo di produrre l’acciaio che è il prodotto più interessante dal punto di vista applicativo usa una forno di dimensioni molto grandi, un altoforno, contrapposto al basso fuoco.

Alcuni degli aspetti di questa tecnologia sono stati già ampiamente analizzati in post passati da Fabio Olmi e dal compianto Giorgio Nebbia. In particolare Olmi ha analizzato gli aspetti legati alla tecnologia attuale e Nebbia alla storia dello sviluppo dell’altoforno, perfezionato in parte dal padre di Abraham Darby III, cioè Abraham Darby II. Ma anche da Cowper e poi da Bessemer. Per cui non ripeterò qui quelle storie.

In sintesi l’altoforno estrae il ferro dall’ossido ma al prezzo di introdurvi una notevole quantità di carbonio mentre l’operazione introdotta da Bessemer sulla base delle scoperte di Reamur, che mise a punto il diagramma di fase Fe-C consente di eliminare la quota di C necessaria a trasformare la ghisa in acciaio introducendovi ossigeno gassoso in opportuna quantità. I vari procedimenti che si sono susseguiti nel tempo Bessemer, Thomas, Martin-Siemens sono ormai un ricordo; nel 1948 l’ingegnere svizzero Robert Durrer del tutto fuori dall’ambiente tradizionale del “big steel” introdusse il processo Linz-Donawitz (LD) e ridusse sin dall’inizio i costi degli impianti e tempi di forgiatura, e aumentò considerevolmente la produttività. Sono reazioni che avvengono tutte ad altissima temperatura con notevole rischio per gli addetti.

Questa procedura costituisce il nerbo dell’industria siderurgica mondiale con enormi impianti integrati che collegano altoforni ed acciaierie.

Hanno consentito all’umanità di usare il ferro per le sue costruzioni quotidiane: case, ponti, infrastrutture accumulando una enorme quantità di ferro.

L’evoluzione della produzione dell’acciaio è espressa dal grafico seguente:

Vedete l’incremento eccezionale soprattutto negli ultimi 20 anni, dovuto essenzialmente alla Cina; siamo ormai a 1.8 miliardi di ton nel 2018 di cui la Cina ne ha prodotto poco più del 50%; se consideriamo la produzione procapite si chiarisce ancor più la situazione:

https://www.worldsteel.org/en/dam/jcr:96d7a585-e6b2-4d63-b943-4cd9ab621a91/World%2520Steel%2520in%2520Figures%25202019.pdf

Scrivono Roland Döhrn and Karoline Krätschell

Our analysis confirms that there seems to be an increase of steel demand in an initial stage of economic development and a decline after economies have reached a certain level of per capita income.

http://www.rwi-essen.de/media/content/pages/publikationen/ruhr-economic-papers/REP_13_415.pdf

In sostanza la maggior parte degli autori collega il reddito e la produzione di acciaio; durante la storia dello sviluppo economico la maggior parte dei paesi sembra correlare il proprio sviluppo economico con il consumo di acciaio usato per molteplici beni durevoli: case, auto, oggetti per la casa, ma anche armi e impianti industriali.

Con la continuazione della crescita lo stock di acciaio si stabilizza e si passa ad altri beni, per esempio aumenta il consumo di alluminio o di rame o di altri elementi, ma l’acciaio e dunque il ferro costituiscono lo stadio basilare dello sviluppo economico.

Questo processo fa cambiare anche il modo di produrre l’acciaio, perché in molti dei paesi “maturi” cresce l’importanza dell’acciaio prodotto per via elettrica, ossia senza passare per la ghisa degli impianti tradizionali ma per il rottame proveniente dal riciclo. Attualmente a livello mondiale circa un 30% dell’acciaio viene da questa fonte. Questa è anche la storia dell’acciaio italiano, dove i grandi impianti storici come Bagnoli o Piombino sono scomparsi lasciando spazio solo a Taranto, mentre l’acciaio elettrico, il tondino del cemento armato ha fatto sviluppare una miriade di piccole e medie imprese soprattutto al Nord, fra Brescia e Bergamo, ricordiamo la Dalmine fra tutte.

Ma c’è ancora un altra cosa da considerare ossia che entrano in gioco altri metodi di produzione diversi da quelli tradizionali, per esempio la cosiddetta riduzione diretta del minerale di ferro, consistente nella sostituzione del carbone come riducente con altri mezzi riducenti

Sono state sviluppate diverse tecnologie di riduzione/fusione diretta in cui il minerale viene ridotto senza fusione con gas riducenti e inviato a un forno di fusione con carbon fossile e ossigeno. Nel forno si sviluppano i gas riducenti che vengono usati per ridurre altro minerale.

Questi metodi oggi riguardano una percentuale ancora piccola del minerale ma la loro importanza è destinata a crescere nel tempo.

Un ultimo aspetto che vorrei citare è quello della corrosione del ferro; la ruggine, come stadio finale della vita del ferro è spesso usata come simbolo della morte, del disfacimento, ma è anche considerata una condizione inevitabile. L’aspetto scientifico è anche molto interessante e merita un post a se; ha stimolato lo sviluppo di materiali come l’acciaio inossidabile, una lega di ferro e cromo che resiste bene alla corrosione in quasi tutti gli ambienti.

Eppure esiste la prova storica e inamovibile che il ferro prodotto in modo opportuno resiste bene alla corrosione. Si tratta della cosidetta colonna di ferro, un monumento indiano del V sec dC a Dehli.

La colonna di ferro di Dehli, 400 dC. mostra una ottima resistenza alla corrosione dovuta allo strato superficiale di fosfato di ferro idrato.

Pesante circa 6 ton si pensa sia stata prodotta in India ad Udayagiri e poi riusata a Dehli dai re Gupta. Essa ha attratto l’attenzione degli archeologi e degli scienziati per la sua elevata resistenza alla corrosione che si pensa venga dalla costituzione superficiale , un fosfato di ferro idrato formatosi su un minerale ad elevata percentuale di fosforo.

Questa colona è l’antenata di un più moderno materiale che è entrato nella industria delle costruzioni col nome di acciaio patinabile (weathering steel), o più comunemente COR-TEN.

Il COR-TEN (da corrosion resistant e tensile stength, dunque forte e resistente) è oggi usato nella costruzione di ponti e altri manufatti durevoli e deve la sua resistenza alla corrosione ad una struttura analoga a quella della colonna di Dehli. Si autoprotegge dalla corrosione tramite una patina degli ossidi dei suoi elementi di lega. Tale strato si forma in un tempo relativamente lungo di mesi per

  • esposizione all’atmosfera;
  • alternanza di cicli di bagnamento-asciugamento;
  • assenza di ristagni e/o contatti permanenti con acqua.

Si tratta di un materiale molto interessante anche se al momento non può essere usato nel cemento armato.

Il ferro ha un grande passato ma anche un notevole futuro e la sua abbondanza lo rende un elemento chiave nella nostra strategia tecnologica per un futuro sostenibile.

Ponte Amedeo IX il beato a Torino. Fotografia di Fabrizio Diciotti, 2012  IL nuovo ponte strallato sulla Dora ha una luce di 43 metri ed è costituito di acciaio COR-TEN

Nota dell’autore.

Dal punto di vista chimico la metallurgia umana è la fortunata applicazione dei criteri e dati esprimibili dalla tabella qua sotto:

https://chem.libretexts.org/Bookshelves/General_Chemistry/Book%3A_ChemPRIME_(Moore_et_al.)/22Metals/22.04%3A_Reduction_of_Metals

L’ossidazione del carbonio (anche se comunemente in forma di monossido) fornisce l’energia libera per la riduzione degli ossidi metallici; come si vede dalla tabella a t ambiente sarebbe possibile solo per argento e mercurio; ma dato che al crescere della temperatura l’energia libera di riduzione del metallo diminuisce (essenzialmente perché l’entropia connessa con la formazione dell’ossigeno aumenta!!! e ricordiamo ΔG=ΔH-TΔS) anche il ferro e lo stagno diventano accessibili; invece l’alluminio o il magnesio non possono essere ridotti in questo modo e dunque si ricorre a reazioni elettrochimiche in cui l’energia elettrica fornita aiuta a superare il gap termodinamico.

*«La posizione della Prussia in Germania non sarà determinata dal suo liberalismo ma dalla sua potenza […] La Prussia deve concentrare la sua forza e tenerla per il momento favorevole, che è già venuto e andato diverse volte. Sin dai trattati di Vienna, le nostre frontiere sono state mal designate a favore di un corpo politico sano. Non con discorsi, né con le delibere della maggioranza si risolvono i grandi problemi della nostra epoca – questo fu il grande errore del 1848 e del 1849 – ma col ferro e col sangue (Eisen und Blut).»
(Otto von Bismarck nel settembre 1862 per far approvare le spese militari del nuovo regno)