PFAS ed effetto “lampione”(seconda parte)

Jean-Luc Wietor

la prima parte di questo post è qui

5.3 Intermezzo: altri usi

Sinora sono stati menzionati e identificati i PFAS impiegati per usi prevalentemente tecnici e alquanto oscuri. Diamo un’occhiata ad alcuni degli altri – meglio conosciuti – utilizzi (Figura 8).

I paragrafi seguenti (da 5.4 a 6) chiariranno queste applicazioni. Tenete a mente che le schiume antincendio hanno un alto potenziale di contaminazione ambientale. Anche i trattamenti superficiali (su pietra, tessili, cuoio) facilmente rilasciano frammenti di PFAS durante l’uso, a causa della grande area esposta agli elementi e della parziale degradabilità degli FT (paragrafo 6.3).Figura 8: Alcuni usi dei PFAS non spiegati in questa relazione, da sinistra a destra: schiume antincendio per incendi di petrolio, cromature, trattamenti idro- e oleo-repellenti (per superfici di cemento o pietra, tappeti, tovaglie, abbigliamento sportivo, valigie e tende), come ausilio tecnico nella produzione di fluoropolimeri come il PTFE.

Il famoso GenX Il GenX è usato da Chemours (in precedenza DuPont, in vari impianti, fra cui quello a Dordrecht in Olanda) come tensioattivo per produrre la polimerizzazione del PTFE. Il GenX ha sostituito il PFOA nel 2012 ed è stato successivamente sostituito (ma non ancora completamente) dal P1010, un tensioattivo privo di fluoro basato sul FeSO4, un tensioattivo non ionico (PPG) e uno a base di acidi grassi. Il GenX è una sorta di “C6.5” ed è registrato a nome del suo sale di ammonio (EC 700-242-3). Il termine “tecnologia GenX” indica il GenX (in forma di acido libero e di sale di ammonio), nonché il prodotto volatile della degradazione, un etere fluorurato.  

5.4. Derivati del fluoruro di sulfonile

Il rappresentante più famoso di questa classe è l’ormai bandito PFOS (C8)[1]; gli altri componenti di questa categoria si basano sui C4. Essi includono il PFBS[2] (recentemente identificato come un SVHC), come pure altri due derivati[3] registrati nella fascia di tonnellaggio 100-1000 ton/anno.

5.5. (Poli)eteri

Ben 15 sostanze sono usate come eteri a molecola piccola (di cui il GenX, vedi inserto) e monomeri per polimeri a base polietere. Queste sostanze sono spesso usate come lubrificanti e tensioattivi. Il lettore è rinviato ad una recente completa rassegna[4] di queste sostanze.

6. Sostanze fluorotelomeri (FT)

Le rimanenti 26 sostanze completamente registrate[5], che totalizzano 6000 ton/a sono probabilmente le più interessanti e recentemente hanno attratto la crescente attenzione dei regolamentatori: due valutazioni CoRAP ed una proposta per un’ampia restrizione nell’ambito del REACH per le sostanze C6. In questo caso si tratta di quelle che sono normalmente chiamate “tecnologia C6”, eppure non sono quello che logicamente ci si aspetta di trovare a metà strada tra le tecnologie C4 e C8. In particolare, la tecnologia C6 è straordinariamente versatile nel tipo di blocchi costruttivi e monomeri che può fornire. Questa versatilità, insieme ad un piccolo sotterfugio metabolico (vedi paragrafo 6.3), è la chiave del successo e della pervasività di questo tipo di composto.

Queste sostanze fluorotelomeri (FT) sono la base per la maggior parte dei prodotti idrorepellenti, oleorepellenti e antimacchia, come pure delle schiume antincendio. Cosa sono?

·    Telomerizzazione La tecnica usata, per esempio, da Chemours: pezzi di estensione (le unità blu in Figura 9 , a sinistra) vengono aggiunte ad un iniziatore (rosso) e la sostanza è completata con un componente non fluorurato (verde). Le impurità possono avere uno o tre pezzi di estensione, per es. 4:2 o 8:2. Unità di numero dispari sono possibili, ma rare. Esiste la possibilità – indesiderabile – che si verifichi una sostituzione con 5:3 o 7:2. Elettrofluorazione La precedente tecnica era usata, per esempio, nell’impianto 3M di Zwijndrecht, Belgio: una sostanza “normale” reagisce in bagno elettrolitico con acido fluoridrico (HF) e viene trasformata in sostanza fluorurata. Eventuali impurità sono dovute a reazione incompleta, a impurità presenti nel materiale di partenza o dalla rottura e diramazione della catena. Sostanze Fluorotelomeri: buono a sapersi

6.1. Un po’ di fluorochimica

I PFAS possono esser prodotti sia per elettrofluorazione o per reazione di telomerizzazione (vedi inserto), che produce le sostanze fluorotelomeri. Esse non sono perfluorurate (cioè completamente fluorurate), in quanto nella maggior parte dei casi due atomi di carbonio si legano ad atomi di idrogeno (Figura 9). Questa struttura può essere completata con un ossigeno, con un solfuro o, meno comunemente, un atomo di carbonio, il che conduce a infinite possibilità di aggiungere altre funzionalità ai fluorotelomeri.

Figura 9: struttura di fluorotelomero tipico (6:2) (a sinistra) e monomero derivato da fluorotelomero per SCFP (destra)

6.2. Esempi di FT

I FT registrati nel REACH (elenco dettagliato negli allegati 8.1 e 8.2) comprendono la maggior parte delle applicazioni più comuni elencate nel paragrafo 5.3. La situazione è sorprendentemente coerente: le varie sostanze possono essere associate ad una specifica applicazione e nessuna delle principali applicazioni rimane senza una attribuzione[6].

6.3. La storia del cuculo

L’unità fluorotelomero 6:2 è subdola quando raggiunge l’ambiente (Figura 10): la parte non fluorurata “2” dell’unità 6:2 può essere degradata per via biotica microbica o abiotica nell’ambiente, generando il PFHxA[7].

Dal momento che il PFHxA è esso stesso un PFAS (e non è assolutamente soggetto a degradazione), analisi di suoli e acque che lo rintracciano potrebbero imputare la sua presenza alle emissioni di PFHxA stesso, mentre dalle considerazioni fatte sui volumi è molto più probabile che esso sia originato da FT 6:2. Può essere utile pensare all’FT come a un cuculo che depone le uova nel nido di un altro uccello (il PFHxA).

 

Figura 10: destino ambientale di FT 6:2 e PFHxA (a sinistra) e analogia ecologica suggerita (a destra).

7.  Lezioni da imparare

7.1. Conclusioni specifiche per gli FT

  • C’è un piccolo gruppo di FT importanti (vedi anche paragrafo 8). Da loro si possono ottenere molteplici SCFP, che sono però piuttosto simili tra loro.
  • Gli FT hanno diverse applicazioni, di cui molte possono portare ad alte emissioni con l’uso.
  • Potrebbero passare inosservati a causa dei loro prodotti di degradazione.

7.2. Conclusioni generali

La dissonanza della Figura 2 (vedi paragrafo 3.1, ndt) può essere così risolta: notate come le frecce sono diventate verdi e puntano l’una verso l’altra. Anche il testo al loro interno è cambiato.

(Figura 11: conclusioni generali, come risolvere la dissonanza cognitiva, ndt).

8.    Allegati

8.1.              FT registrati con tonnellaggio 100-1000 ton/anno e usi conosciuti

8.2.              FT registrati con tonnellaggio 10-100 ton/anno e usi conosciuti

Un elenco delle sostanze registrate da 1-10 ton/anno può essere fornito – su richiesta – dall’autore. Tra gli altri, queste sostanze includono monomeri aggiuntivi (tioli e alcoli) che possono essere usati per produrre SCFP basati sul poliuretano piuttosto che sulla struttura chimica poli(meta)crilata.

Contatto

Dr Jean-Luc Wietor

Senior Policy Officer

Chemicals and Sustainable Production

European Environmental Bureau

Tel: +32 2 274 1017

Email: jean-luc.wietor@eeb.org

           Jean-Luc WIETOR

Senior Policy Officer for Industrial Production

Jean-Luc works on emissions from industrial activities to the environment, focussing on up-dating and implementing the Industrial Emissions Directive, and promoting ambition, best practices and techniques. Before he joined EEB, Jean-Luc worked in chemical R&D and marketing, in public affairs and consulting. He holds a PhD in chemistry from Cambridge University and an MBA from FOM Düsseldorf. Jean-Luc is from Luxembourg and speaks Luxembourgish, German, French, Dutch, and English as well as some Italian and Spanish.

+32 2 274 10 17

jean-luc.wietor@eeb.org


[1] Una volta ampiamente usato come tale nelle cromature o come derivato in molti diversi usi.

[2] Registrato come il suo sale di potassio (EC 249-616-3), come pure come bassi tonnellaggi di due sali di alchilamonio (alkylammonium salts) EC 700-536-1 e EC 444-440-5. C’è anche un acido sulfonico FTS, contato con gli FTSs (EC 248-850-6), vedi appendice 8.2

[3] Queste sostanze dimostrano le limitazioni di questo modello di classificazione. I composti EC 252-043-1 e EC 252-044-7 sono alcoholfunctional C4-sulphonamides che possono essere usati come monomeri, per esempio per produrre SCFP attraverso la polimerizzazione a condensazione, es. Poliuretani o polyoxetanes. C’è anche un monomero metacrilato (methacrylate monomer) basato su un C4-sulphonamide (EC 266-737-7), che è stato contato (registrato) con i monomeri per gli SCFP, perché assolve a simili funzioni.

[4] Z. Wang et al. (2020): Per- and polyfluoroalkyl ether substances: identity, production and use, Nordic Council of Ministers.

[5] Strettamente parlando, due di queste sostanze (EC 807-113-1 and 246-791-8) non sono FTS, ma sono tuttavia probabili componenti per i SCFP o i PFAE (polieteri).

[6] Una ricerca specifica su queste attribuzioni le ha confermate. Queste e ulteriori informazioni possono essere fornite – su richiesta – dall’autore.

[7] A prima vista questo meccanismo sembra implausibile, dal momento che presuppone la rottura di due legami C-F, di per sé molto forti. Tuttavia, accade proprio così, come viene descritto in modo convincente da M.J.A. Dinglasan et al., Environ. Sci. Technol. 2004, 38(10), 2857.

Rispondi

Inserisci i tuoi dati qui sotto o clicca su un'icona per effettuare l'accesso:

Logo di WordPress.com

Stai commentando usando il tuo account WordPress.com. Chiudi sessione /  Modifica )

Google photo

Stai commentando usando il tuo account Google. Chiudi sessione /  Modifica )

Foto Twitter

Stai commentando usando il tuo account Twitter. Chiudi sessione /  Modifica )

Foto di Facebook

Stai commentando usando il tuo account Facebook. Chiudi sessione /  Modifica )

Connessione a %s...

Questo sito utilizza Akismet per ridurre lo spam. Scopri come vengono elaborati i dati derivati dai commenti.