Rinaldo Cervellati
In questo post traduco, adattandolo, un articolo-review di Mark Peplow, pubblicato su C&EN news il 5 febbraio scorso.
I laboratori di ricerca sulle macchine molecolari aumentano di anno in anno, tanto che si può quasi udire il ronzio immaginario di questi dispositivi su scala nanometrica.
Negli ultimi due decenni, i ricercatori hanno assemblato una stupefacente serie di molecole con parti mobili che agiscono come macchinari in miniatura. Hanno realizzato motori con pale rotanti, pompe che raccolgono molecole dalla soluzione, assemblatori molecolari che mettono insieme peptidi e in grado di leggere i dati memorizzati su fili di nastro molecolare. Tra i pionieri in questo campo troviamo l’italiano Vincenzo Balzani,https://www.scienzainrete.it/contenuto/articolo/pietro-greco/balzani-pioniere-delle-macchine-molecolari-premiate-stoccolma
Jean-Pierre Sauvage, J. Fraser Stoddardt e Bernard L. Feringa che hanno ottenuto il premio Nobel per la chimica 2016.
Cosa possono fare questi dispositivi? Sebbene le applicazioni siano ancora relativamente lontane, i ricercatori stanno iniziando a vedere come le macchine molecolari potrebbero essere sfruttate per compiti utili. Ad esempio i motori molecolari possono flettere le nanofibre o riorganizzare i cristalli liquidi, che possono essere utilizzati per creare materiali reattivi e “intelligenti”.
Ora i ricercatori si stanno ponendo domande più profonde: come funzionano le macchine e come possiamo migliorarle? Le risposte, dicono alcuni, arriveranno studiando la cinetica e la termodinamica di questi sistemi per capire come l’energia e le velocità di reazione li fanno funzionare. Affrontare questi fondamenti potrebbe aiutare il campo a superare un approccio in qualche modo basato su tentativi ed errori alla costruzione di macchine e sviluppare invece un insieme più robusto di principi di progettazione.
I ricercatori stanno già iniziando a mettere a punto i combustibili chimici che guidano alcune macchine molecolari. Stanno anche costruendo macchine molecolari autonome che richiedono meno intervento da parte dei loro operatori umani, fintanto che è presente una scorta di carburante scelta con cura. Ma questa attenzione ai carburanti sta anche suscitando accesi dibattiti sui principi fondamentali del funzionamento di queste macchine. I motori sono forse il tipo più iconico di macchina molecolare. In genere operano attraversando un ciclo ripetuto di reazioni chimiche che modificano la forma della molecola e provocano il movimento, ad esempio la rotazione attorno a un legame o il movimento lungo una traccia. Per evitare che il motore si muova inutilmente avanti e indietro, i ricercatori hanno anche bisogno di un meccanismo che assicuri che si muova in una sola direzione.
Il primo motore molecolare rotativo sintetico completamente funzionante è stato presentato nel 1999 da Ben Feringa, dell’Università di Groningen. L’innovativo motore di Feringa conteneva due voluminosi gruppi chimici collegati da un doppio legame carbonio-carbonio. I gruppi ruotavano attorno a questo asse attraverso una serie di isomerizzazioni indotte dalla luce ultravioletta e dal calore. La chiralità della molecola motrice assicurava che i gruppi ingombranti potessero schiacciarsi l’uno accanto all’altro quando si muovevano in avanti nel ciclo ma non all’indietro [1].
Sulla sua scia sono seguiti dozzine di altri motori guidati dalla luce e sono stati sfruttati per una varietà di compiti, come la produzione di gel sensibili alla luce e il movimento di muscoli artificiali. La luce è una fonte di energia comoda e regolabile e non produce prodotti di scarto.

Fig.1 Questo motore autonomo contiene un anello (blu) che si muove in senso orario attorno a un binario circolare in quattro fasi. I siti di riconoscimento (verdi) ostacolano l’anello, mentre i gruppi ingombranti (rossi) ne impediscono l’avanzamento. Le molecole di carburante (sfere rosse) aggiungono questi gruppi bloccanti, che possono essere rimossi per produrre scorie (sfere arancioni). Copyright: Nature.
Tuttavia, per coloro che cercano di comprendere e imitare le macchine molecolari biologiche, come le proteine motrici che aiutano a trasportare il carico all’interno delle cellule, la luce non è sufficiente. La biologia ha utilizzato con successo pompe e motori molecolari per miliardi di anni, ma generalmente li guida con sostanze chimiche come l’adenosina trifosfato (ATP) piuttosto che con la luce. Per i chimici, quel precedente rappresenta una sfida irresistibile per lo sviluppo di macchine molecolari sintetiche alimentate da processi chimici.
Nel 1999, T. Ross Kelly del Boston College ha compiuto un passo importante verso tale obiettivo sviluppando un prototipo di motore alimentato a fosgene in grado di ruotare di 120° [2]. Sei anni dopo, Feringa costruì un motore rotativo ad azionamento chimico in grado di completare un giro completo attorno a un singolo legame C–C formando e rompendo un lattone che collegava le due unità del motore. Un agente riducente chirale fungeva da combustibile, aprendo il lattone e assicurando che il motore ruotasse in un’unica direzione [3].
I ricercatori hanno ora una serie di altre strategie di rifornimento [4]. Alcuni impiegano una serie di passaggi di protezione e deprotezione che aggiungono o rimuovono gruppi chimici pesanti dalla macchina. Altri variano il pH per far compiere a una macchina un ciclo completo. Un terzo approccio, sviluppato negli anni ’90, dipende da reazioni di ossidazione e riduzione.
La maggior parte di questi dispositivi azionati chimicamente si affida ai loro manipolatori umani per aggiungere il giusto tipo di carburante o altri reagenti in ogni punto del ciclo della macchina.
Ancora più importante, non è così che funzionano le macchine biomolecolari. Nuotano in un mare di molecole di carburante come l’ATP, le raccolgono ogni volta che ne hanno bisogno e operano ininterrottamente. Raggiungere quel tipo di autonomia nelle macchine molecolari sintetiche è un obiettivo importante per il settore.
A differenza dei fotoni, i combustibili chimici forniscono un modo per immagazzinare e trasportare una fonte di energia concentrata a cui le macchine molecolari possono accedere su richiesta [5]. David Leigh (University of Manchester) ritiene che se le macchine possono accedere a una fonte di energia secondo necessità, potrebbero avere una gamma più ampia di applicazioni rispetto ai sistemi non autonomi.
Nel 2016, Leigh ha pubblicato una pietra miliare nella spinta all’autonomia delle macchine. Afferma: “È stato il primo motore autonomo guidato chimicamente”. Il motore è costituito da un anello molecolare che può muoversi su una pista circolare. Ci sono due regioni, chiamate siti di riconoscimento, sui lati opposti della pista, che possono mantenere l’anello in posizione mediante legami a idrogeno. Ciascun sito di riconoscimento si trova vicino a un gruppo idrossilico che reagisce con un combustibile, il cloruro di fluorenilmetossicarbonile (Fmoc-Cl). Questa reazione installa ingombranti gruppi Fmoc sul binario, bloccando il movimento dell’anello [6].
Ma la miscela di reazione contiene anche una base che aiuta a strappare i gruppi bloccanti, permettendo all’anello di passare. Il risultato è che i gruppi Fmoc entrano ed escono costantemente dai siti di ancoraggio idrossilici della traccia. Fondamentalmente, l’impedimento sterico assicura che la reazione per aggiungere un Fmoc avvenga circa cinque volte più velocemente nel sito di ancoraggio che si trova di fronte all’anello.
Da allora, Leigh ha utilizzato una chimica del carburante Fmoc in una pompa autonoma che raccoglie gli eteri dalla soluzione e li inserisce in una lunga catena di stoccaggio [7]. L’avvento di tali dispositivi autonomi ha suscitato entusiasmo, ma alimenta anche un dibattito di lunga data su come funzionino effettivamente le macchine molecolari guidate chimicamente. Ed è qui che le cose si complicano.
Per comprendere questo dibattito, si consideri la chinesina, una macchina biologica proteica che trasporta il carico all’interno delle cellule. La proteina ha due “piedi” che avanzano lungo binari rigidi chiamati microtubuli e il movimento è guidato dall’idrolisi dell’ATP in adenosina difosfato (ADP). Alcuni ricercatori hanno sostenuto che la rottura del forte legame fosfato nell’ATP innesca la chinesina mettendola in uno stato ad alta energia. Il rilassamento della chinesina da questo stato provoca un cambiamento conformazionale che spinge i “piedi” in avanti, uno dopo l’altro.
Questa interpretazione non è corretta, afferma Dean Astumian, un fisico dell’Università del Maine che ha svolto un ruolo chiave nel guidare il pensiero sul funzionamento dei motori molecolari: “Lo dico come un fatto deduttivo, non come un’opinione: i dati sperimentali mostrano che il movimento della chinesina è controllato dalle velocità relative delle reazioni reversibili che coinvolgono anche chinesina, ATP e i loro prodotti.”[8].

Fig. 2 Un combustibile carbodiimmide chirale e un catalizzatore chirale aiutano a garantire che questo motore autonomo ruoti in una direzione. Le frecce tratteggiate mostrano reazioni inverse che sono meno probabili nelle condizioni di reazione. Copyright: Nature
Astumian e altri sostengono che tutte le macchine molecolari guidate chimicamente sono governate dall’asimmetria cinetica in questo tipo di “dente di arresto” browniano. Al contrario, i colpi di potenza sono coinvolti nella guida di macchine guidate dalla luce: la luce eccita il dispositivo in uno stato di alta energia e il suo rilassamento provoca un grande cambiamento meccanico. Questa distinzione nel meccanismo ha importanti implicazioni.

Fig. 3 Il “dente di arresto” autonomo contiene un anello (nero) intrappolato su un binario lineare (grigio). Girando finemente il carburante della macchina, che installa un gruppo barriera (rosa) sul binario, i ricercatori possono migliorare le possibilità dell’anello di assestarsi nel sito di riconoscimento (verde) più lontano dalla barriera. Copyright: J. Am. Chem Soc.
Il modello di “dente di arresto” browniano è ampiamente accettato tra i macchinisti molecolari. Ma alcuni sottolineano che se il ruolo principale di una molecola di combustibile non è quello di fornire energia per far muovere un motore molecolare, non dovrebbe essere chiamata combustibile.
Alcuni ricercatori affermano che il carburante è semplicemente una comoda scorciatoia per qualsiasi reagente che aziona una macchina molecolare.
Per affrontare questo e altri problemi meccanicistici, i ricercatori hanno recentemente delineato una serie di modelli che descrivono la termodinamica e la cinetica alla base delle macchine molecolari. In aprile 2022, Leigh ha presentato un motore autonomo guidato chimicamente che è molto più efficiente del suo esempio del 2016. Il motore beneficia di una migliore reazione di alimentazione e di due fasi distinte che conferiscono ciascuna una certa asimmetria cinetica al suo ciclo di reazione. Il motore contiene una coppia di gruppi arilici che ruotano attorno a un legame singolo C–C formando e rompendo un gruppo di anidride a ponte. I ricercatori usano un combustibile chirale di carbodiimmide e un catalizzatore di idrolisi chirale, assicurando che il motore giri (principalmente) in una direzione [9]
Feringa afferma che il suo team sta effettuando calcoli di meccanica molecolare e altri approcci di modellazione per effettuare progetti di macchine e capire come diverse strutture e sostituenti potrebbero farli funzionare più velocemente e in modo più efficiente. A luglio, i ricercatori hanno mostrato un motore autonomo che funziona con carbodiimmide in ambiente acido ma ruota formando e rompendo un estere a ponte [10].
Leigh sta anche modificando i suoi carburanti per migliorarne le prestazioni. A settembre, il suo team ha dimostrato tale approccio su un “dente di arresto” autonomo che contiene un anello intrappolato su un binario lineare [11].
Per ora, tutte queste macchine autonome alimentate chimicamente sono dispositivi di prova che non svolgono compiti utili. Ma Leigh ci sta lavorando. In collaborazione con Katsonis dell’Università di Groningen, ad esempio, spera di manipolare i cristalli liquidi con i suoi motori alimentati chimicamente, cosa già ottenuta con i motori azionati dalla luce. Katsonis afferma che il progetto sta evidenziando una delle difficoltà per i sistemi alimentati chimicamente: come gestire i loro prodotti di scarto. I rifiuti chimici prodotti dalle reazioni di alimentazione possono alterare le condizioni di reazione come il pH o legarsi alla macchina in modi che ostacolano l’accesso a ulteriori molecole di carburante. Le molecole di scarto potrebbero essere riciclate in carburante, proprio come la natura trasforma l’ADP in ATP. Per raggiungere questo obiettivo, i ricercatori dovranno sviluppare una gamma più ampia di carburanti per macchine autonome.
Nel frattempo, un’altra fonte di energia sta venendo alla ribalta. Stoddart ha recentemente sviluppato un motore molecolare che utilizza un meccanismo redox azionato direttamente dall’elettricità [12]. Di fronte alla sana concorrenza della luce e dell’elettricità, le macchine autonome alimentate chimicamente ora devono dimostrare di poter svolgere una varietà di utili funzioni meccaniche, afferma Feringa: “Questa è la cosa più interessante e importante, e questa è la grande sfida”
Bibliografia
[1] N. Komura et al., Light-driven monodirectional molecular rotor, Nature, 1999, 401, 152-155.
[2] T. Ross Kelly, H. De Silva, R. De Silva, Unidirectional rotary motion in a molecular system, Nature, 1999, 401, 150-152.
[3] S.B. Fletcher et al., A Reversible, Unidirectional Molecular Rotary Motor Driven by Chemical Energy, Science, 2005, 310, 80-82.
[4] R. Benny et al., Recent Advances in Fuel-Driven Molecular Switches and Machines, Chemistry Open, 2022, 9, 1-21.
[5] S. Borsley, D.A. Leigh. BMW. Roberts, Chemical fuels for molecular machinery, Nature Methods, 2022, 14, 728-738.
[6] M.R. Wilson et al., An autonomous chemically fuelled small-molecule motor, Nature, 2016, 534, 235–240.
[7] S. Amano, S.D.P. Fielding, D.A. Leigh, A catalysis-driven artificial molecular pump, Nature, 2021, 594, 529–534.
[8] R. D. Astumian, S. Mukherjee, A. Warshel, The Physics and Physical Chemistry of Molecular Machines, ChemPhysChem, 2016, 17, 1719-1741.
[9] S. Borsley et al., Autonomous fuelled directional rotation about a covalent single bond, Nature, 2022, 604, 80–85.
[10] K. Mo et al., Intrinsically unidirectional chemically fuelled rotary molecular motors, Nature, 2022, 609, 293–298.
[11] S. Borsley et al., Tuning the Force, Speed, and Efficiency of an Autonomous Chemically Fueled Information Ratchet,J. Am. Chem. Soc., 2022, 144, 17241–17248.
[12] L. Zhang et al., An electric molecular motor, Nature, 2023, 613, 280–286.
Lunedì sera Report ha fatto una trasmissione dedicata all’importanza dei microchip nella tecnologia attuale; in tutta la trasmissione non si è mai detta una cosa basica; è stato un italiano a costruire ed usare il primo microchip, Federico Faggin negli anni 60 ; nel 1967, alla SGS-Fairchild (oggi STMicroelectronics) ad Agrate Brianza, sviluppò la prima tecnologia di processo per la fabbricazione di circuiti integrati MOS (Metal Oxide Semiconductor) e progettò i primi due circuiti integrati commerciali MOS. Oggi le macchine molecolari, che sostituiranno i microchip e sono il futuro della produzione industriale umana, stanno muovendo i primi passi ed ancora una volta è stato un italiano , Vincenzo Balzani a catalizzarne lo sviluppo; la nostra scuola di chimica e materiali è stata ed è all’avanguardia nel mondo. Il problema sono le nostre classi dirigenti, economiche e politiche, incapaci perfino di comprendere la grandezza della scienza e cultura del nostro paese e spesso disposti a venderne l’anima. L'”America” è qua, altro che storie, a patto di rinnovare profondamente le nostre storicamente incapaci classi dirigenti, sia economiche che politiche. Classi che storicamente si sono vendute al miglior offerente, ai grandi potentati occidentali in particolare; una storia che in parte questo blog ha raccontato con la firma di un collega che non c’è più: https://ilblogdellasci.wordpress.com/2014/02/28/listituto-nazionale-di-chimica-una-occasione-troppo-presto-dimenticata/