Informazioni su devoldev

chemist, university researcher, marxian, peakoiler,climate worried, bridge player, Mozart/Vivaldi loving, pedal biker

Numeri di ossidazione: fra topologia e meccanica quantistica.

In evidenza

Claudio Della Volpe

Faccio la mia solita premessa; non sono uno specialista del tema di cui vi parlo oggi; sono solo un lettore curioso; potrei commettere errori; e dunque mi aspetto delle “generose” correzioni; diciamo che se ci fossero più colleghi disposti a fare divulgazione ci sarebbero meno errori. Avrei è vero potuto chiedere una intervista ai due colleghi di cui parlo, ma la questione base è il linguaggio da usare; la topologia è astrusa per i fisici, e ancor più per noi chimici. Questo è un tentativo di parlarne a partire da quello che ne sa un povero chimico.

In un recente articolo pubblicato su Nature Physics i due colleghi della SISSA, Federico Grasselli e Stefano Baroni hanno dimostrato che i numeri di ossidazione che usiamo tutti i giorni e che insegniamo agli studenti fin dal liceo sono una della grandezze basilari della meccanica quantistica ed hanno natura topologica, sono quantità legate alla topologia del sistema. 

Non temete di trovare quasi incomprensibile perfino l’abstract del lavoro; il nostro linguaggio è diverso da quello dei fisici teorici; cercherò di renderlo più amichevole sia per i meno esperti che per il grande pubblico.

Ad un primo esame potrebbe sembrare che i numeri di ossidazione siano solo l’ennesimo strumento euristico che la Chimica si è inventato e che ne rende possibile una relativa indipendenza dalla Meccanica Quantistica; molti colleghi sottolineano spesso questo aspetto base della Chimica. Ed hanno ragione. La Chimica che conosciamo, che studiamo dal Liceo e i cui principi base si possono studiare anche alle elementari (il nostro post più letto scritto dalla sempreverde Silvana Saiello: https://ilblogdellasci.wordpress.com/2013/06/06/chimica-alle-elementari/) è uno strumento euristico potentissimo; tuttavia è altrettanto vero che faticosamente la Scienza riscopre che questo strumento euristico è nondimeno profondamente preciso: è la Chimica, bellezza!!

Questo è appunto il caso dei numeri di ossidazione. Ovviamente la Meccanica Quantistica (MQ) è in grado di andare al di là e vedremo quali sono le rivoluzionarie conclusioni dell’articolo di Grasselli e Baroni.

Non temiate di immergevi in queste acque oscure.

Il numero di ossidazione (NO) o di ossidoriduzione ha una definizione empirica: è la differenza tra il numero di elettroni di valenza dell’atomo considerato e il numero di elettroni che ad esso rimangono dopo aver assegnato tutti gli elettroni di legame all’atomo più elettronegativo di ogni coppia. Non esisteva fino a questo punto una definizione ottenibile da principi primi.

Esiste una definizione formale nel Goldbook (http://goldbook.iupac.org/terms/view/O04365), ma si tratta comunque di una definizione empirica che non discende da principi primi:

OS of an atom is the charge of this atom after ionic approximation of its heteronuclear bonds.

Esistono una serie di lavori pubblicati negli ultimi anni che cercano di rispondere al problema se il NO sia una grandezza che possa andare al di là della definizione empirica datane nel GoldBook. Per esempio Inorg. Chem. 2011, 50, 10259–10267 oppure A.J. Webster et al., Polyhedron (2015), http://dx.doi.org/10.1016/j.poly.2015.11.018

In entrambi i casi si usa il concetto dell’occupazione di orbitale; nel secondo lavoro la cosiddetta matrice di occupazione consente di ottenere un autovalore che corrisponderebbe al NO. Nel primo si cerca addirittura di definire un operatore corrispondente ma sempre a partire dalla matrice di occupazione; si tratta comunque di proposte finora non condivise o comunque di proposte che cercano appunto di dare al NO la dignità di quantità basica della MQ. Un altro lavoro che vale la pena di citare per chi se la sente di approfondire e di Jiang e coll. PHYSICAL REVIEW LETTERS 108, 166403 (2012) in cui si affronta il problema di una definizione formale a partire da principi primi del NO ma solo per lo stato solido, mentre il lavoro dei colleghi della SISSA è più generale.

Il lavoro di Grasselli e Baroni scoprendo la natura teorica di questa grandezza fa passare la scoperta euristica ad un livello di concetto teorico.

Per arrivare a capire un po’ la cosa dobbiamo partire dalla topologia, un argomento di cui ci siamo già occupati in altri post (https://ilblogdellasci.wordpress.com/2016/06/13/dai-quadrati-magici-alla-topologia-molecolare-parte-3-wiener/)

 

La topologia o studio dei luoghi (dal greco τόπος, tópos, “luogo”, e λόγος, lógos, “studio”) è lo studio delle proprietà delle figure e delle forme che non cambiano quando viene effettuata una deformazione senza “strappi”, “sovrapposizioni” o “incollature”. (da wikipedia)

Per la topologia una sfera o un cubo sono figure equivalenti o come si dice tecnicamente omeomorfe. Così anche una tazza del caffè ed una ciambella. Una tazza a due manici è equivalente ad una pentolona a due manici od anche ad un otto, mentre un brezel, comune dalle mie parti, equivarebbe ad un mastello a tre manici.

 

Oggetti come una sfera o un cubo sono topologicamente “triviali” mentre non lo sono quelli come una tazza o un brezel. Gli oggetti omeomorfi , cioè che possono essere ridotti l’uno all’altro con modifiche continue si corrispondono in modo “intero”, hanno una caratteristica intera che è loro specifica, per esempio il numero di “buchi” che posseggono; questo numero non può essere modificato in modo graduale, ma solo discontinuo, costituisce una sorta di transizione di fase da un tipo di oggetto all’altro, una transizione topologica (sottolineata nell’immagine sopra dal termine POW). Il numero di buchi può essere definito in modo formale e si chiama genere della superficie.

La topologia non è un astruso argomento matematico, come abbiamo visto per esempio nei post dedicati alla topologia molecolare, la forma delle molecole, l’uso dei grafi nella previsione delle proprietà delle molecole.

La topologia è un argomento che negli ultimi anni è stata ripetutamente presente nelle presentazioni dei Nobel; oltre quella dei Fisici del 2016, possiamo ricordare la presentazione del Chimico Premio Nobel Jean Pierre Sauvage sempre nel 2016 che si intitolava: From Chemical Topology to Molecular Machines

Ma dirò di più. La topologia è una disciplina che applichiamo costantemente ma spesso senza accorgercene; riconoscere il suo ruolo quotidiano provoca un effetto di straniamento.

Per esempio la topologia è lo strumento quando scegliamo un percorso su una mappa della metro, dove non compaiono le informazioni metriche, le distanze, scegliamo un colore che corrisponde ad una certa forma, una certa topologia.

Fare un nodo alle scarpe è un processo topologico in cui le misure esatte non contano, la metrica non conta ma il modo di avvolgere le cose sì.

Molti esseri viventi, compresi noi, hanno la medesima topologia, un tubo digerente, sostanzialmente un toro, non dissimili da un verme che è una delle forme di vita più antiche che si conoscano, ma diverse da una singola cellula.

L’albero dell’evoluzione è una struttura topologica, non metrica.

Passare dalla descrizione della Terra come piatta ad una come sfera è una scelta topologica, o se volete una scoperta topologica.

Colorare le carte geografiche con colori diversi è un problema di topologia (il teorema dei 4 colori).

Dunque la topologia non è una cosa astratta, affatto; comunque non più dell’algebra o di altre parti della matematica.

Entriamo nell’argomento definendo in modo più approfondito un numero quantico topologico: qualunque quantità che prende uno solo di un set finito di valori sulla base di considerazioni topologiche legate al sistema in studio, anche non in casi legati alla meccanica quantistica. Possono essere per esempio numeri che compaiono nelle soluzioni di equazioni del sistema anche differenziali la cui forma dipenda da considerazioni topologiche.

La scoperta e l’analisi di queste quantità ha significato la assegnazione del premio Nobel per la Fisica 2016 a Thouless, Haldane e Kosterlitz.

Si tratta di quantità che a differenza dei comuni numeri quantici NON dipendono dalla simmetria del sistema, sono insensibili a tale simmetria; la simmetria è un fatto “metrico”, dipende dalle misure esatte dell’oggetto, mentre la topologia no. I numeri quantici che conosciamo dipendono dalla simmetria, quelli topologici no.

Quanto sia importante l’approccio topologico si comprende da lavori precedenti quello di cui stiamo parlando per esempio Topological quantum chemistry di Bradlyn e coll, Nature 547, 298 (2017) che tenta di classificare la natura topologica della struttura in bande (di conduzione essenzialmente) di tutti i materiali conosciuti in questo campo (oltre 200.000) suddivisi nei 230 gruppi di simmetria.

Il problema dunque è che i fisici teorici ci stanno indicando una strada (apparentemente) nuova: quanto è importante la topologia nella chimica? E’ un argomento che come blog abbiamo già sfiorato in precedenti post e abbiamo visto che certi aspetti come la previsione di proprietà sono ben consolidati. Qua ne stiamo allargando il ruolo. Personalmente ritengo che la topologia dovrebbe diventare un argomento comune di studio per i neochimici.

Dice Davide Castelvecchi su Le Scienze di qualche anno fa (traducendo un articolo da Scientific American)

Alcune delle proprietà fondamentali delle particelle subatomiche sono intrinsecamente topologiche. Prendiamo, per esempio, lo spin dell’elettrone, che può puntare verso l’alto o verso il basso. Capovolgiamo un elettrone dall’alto verso il basso, e poi ancora verso l’alto: si potrebbe pensare che questa rotazione di 360° riporti la particella al suo stato originale. Ma non è così.

Nel strano mondo della fisica quantistica, un elettrone può essere rappresentato anche come una funzione d’onda che codifica informazioni sulla particella, come la probabilità di trovarla in un determinato stato di spin. In modo controintuitivo, una rotazione di 360° sfasa la funzione d’onda, in modo che le creste e gli avvallamenti si scambiano. Ci vuole un’altra rotazione di 360° per portare finalmente l’elettrone e la sua funzione d’onda ai loro stati iniziali.

Questo è esattamente ciò che accade in una delle stranezze topologiche preferite dai matematici: il nastro di Möbius, che si realizza dando una singola torsione a un nastro e poi incollando tra loro le sue estremità. Se una formica, camminando sul nastro, facesse un giro completo, si troverebbe sul lato opposto rispetto al punto in cui ha cominciato. Deve fare un altro giro completo prima di poter tornare alla sua posizione iniziale.

La situazione della formica non è solo un’analogia per ciò che accade alla funzione d’onda dell’elettrone: si verifica veramente all’interno di uno spazio geometrico astratto fatto di onde quantistiche. È come se ogni elettrone contenesse un minuscolo nastro di Möbius che porta con sé un po’ di topologia interessante. Tutti i tipi di particelle che condividono questa proprietà, quark e neutrini compresi, sono conosciuti come fermioni; quelli che non la condividono, come i fotoni, sono classificati come bosoni.

Torniamo al nostro argomento. L’esempio dello spin chiarisce che le proprietà topologiche possono appartenere allo spazio a cui le funzioni che descrivono il comportamento del sistema si riferiscono, lo spazio delle configurazioni in cui tali funzioni sono definite. E’ un modo di ragionare poco intuitivo ma molto efficiente. Dobbiamo immaginare lo spazio multidimensionale in cui le funzioni d’onda sono definite e considerarne le caratteristiche topologiche, una cosa non banale assolutamente.

Nella parte centrale del lavoro Grasselli e Baroni fanno esattamente questo, ossia analizzano le proprietà dello spazio delle configurazioni delle funzioni d’onda

Quando si studiano sistemi come un sale fuso si usa fare dinamica molecolare di particelle alle quali poi si applica la meccanica quantistica; data la difficoltà di analizzare sistemi con grandi numeri di particelle si usa un trucco contabile che è la periodicità, ossia si usano celle di opportuna dimensione con la proprietà che le traiettorie delle particelle che escono da una parte rientrano dalla parte opposta; ora facendo questo lo spazio fisico studiato è quello euclideo normale, ma lo spazio delle configurazioni delle variabili non lo è; come rappresentato in figura tale spazio delle configuazioni è invece non banale, come quello di un toro (vedi figura). In queste condizioni essi calcolano la conducibilità cosiddetta adiabatica, ossia con trasformazioni che seguono il cosiddetto teorema di Born e Fock che recita (più o meno):

Un sistema quanto meccanico soggetto a condizioni esterne che cambiano gradualmente adatta la sua forma funzionale, ma quando soggetto a condizioni rapidamente variabili e non ha il tempo di adattarsi la densità spaziale di probabilità rimane invariata.

Essi ottengono una espressione (per la cronaca la eq. 11 del lavoro) da cui si conclude che

La conducibilità elettrica adiabatica di un liquido può essere ottenuta esattamente sostituendo nella definizione di conducibilità (ossia la derivata rispetto al tempo del vettore polarizzazione macroscopica del sistema, andatevi a riguardare gli appunti di chimica –fisica 2!!) al cosiddetto tensore di Born o carica di Born di ciascun atomo (che è un numero reale dipendente dal tempo) una carica topologica scalare, che è un intero non dipendente dal tempo, ma solo dalla specie atomica considerata.

Nella seconda parte del lavoro gli autori dimostrano mediante esperimenti numerici che questa carica topologica è equivalente al numero di ossidazione dell’atomo in questione.

E questa ammetterete che è una conclusione eccezionale; senza saperlo noi chimici abbiamo usato la topologia del sistema per valutarne il comportamento e lo abbiamo fatto a partire da un approccio euristico che chiamiamo chimica! Oggi la MQ i dimostra che quel numero è una delle “costanti del moto” di quegli atomi!

Le conclusioni del lavoro sono abbastanza interessanti anche dal punto di vista pratico, dato che in questo modo si risparmia molto tempo di calcolo, non dovendosi più calcolare i tensori di Born; ma lo sono anche per i fenomeni che prevedono.

In particolare, scrivono Grasselli e Baroni (vi lascio la frase intera anche per gustare il modo di scrivere dei fisici teorici):

Our analysis shows that the coexistence of different oxidation states for the same element in the same system may be due to the exis- tence of zero-gap domains in the atomic configuration space that would be crossed by any atomic paths interchanging the positions of two identical ions in different oxidation states. While this sce- nario is probably the most common to occur, a different, more exotic, one cannot be excluded on purely topological grounds and its existence is worth exploring. In fact, when strong adiabaticity breaks, it is possible that two loops with the same winding num- bers could not be distorted into one another without closing the electronic gap, and they may thus transport different, yet integer, charges. While in the first scenario closing the electronic gap while swapping two like atoms would simply determine the chemically acceptable inequivalence of the oxidation numbers of two iden- tical atoms in different local environments, the second scenario would imply the chemically wicked situation where two different oxidation states can be attached to the same atom in the same local environment. As a consequence, one could observe a non-vanishing adiabatic charge transport without a net mass transport (see the discussion in ref. 33)

(sottolineatura mia)

A proposito dell’ultima frase tuttavia devo dire che da chimico che insegna elettrochimica da molti anni questo fenomeno di trasportare carica senza trasportare massa mi sembra ben conosciuto: mi ricorda molto da vicino il meccanismo “al salto” proposto per spiegare la conducibilità di protoni e ioni idrossido in acqua, chiamato spesso meccanismo di Grotthus. In sostanza la struttura elettronica si riarrangia lungo catene di diverse molecole di acqua legate da legami idrogeno e il protone non si sposta ma la sua carica si. Un altro esempio (di cui sono debitore a Vincenzo Balzani) è nella reazione chetoenolica dove succede una cosa analoga: nel 2° step della catalisi acida, la carica si attacca e migra poi da un legame all’altro, questa volta dentro un certa molecola , ma sempre senza spostamento di massa.

Se è così forse la chimica “euristica” ha ancora qualcosa da raccontare alla fisica teorica: chimica e topologia…. (ovviamente a patto di mettersi a studiare).Il meccanismo di Grotthus, notate come la carica migri senza spostamento di massa anche su catene lunghe di molecole di acqua legate da legami idrogeno (se non vedete in azione l’immagine, cliccateci sopra).

Ringrazio Vincenzo Balzani e mia figlia Daniela per gli utili suggerimenti.

Riferimenti:

https://www.lescienze.it/news/2019/07/01/news/spiegazione_quantistica_numero_ossidazione_sissa-4465208/

https://www.reccom.org/2019/05/23/materia-topologica-nuova-fisica/

http://www.lescienze.it/news/2017/07/22/news/strana_topologia_plasma_fisica-3610402/

https://www.nature.com/articles/nature23268

http://www-dft.ts.infn.it/~resta/gtse/draft.pdf   di Raffaele Resta, Questo è un testo ottimo! Ve lo consiglio.

Author(s): Erica Flapan  Series: Outlooks Publisher: Cambridge University Press, Year: 2000  ISBN: 0521664829,9780521664820  When Topology meets Chemistry

Elementi della tavola periodica: Ferro, Fe. 2. L’uomo d’acciaio.

In evidenza

Claudio Della Volpe

(la prima parte di questo post è qui)

Il ferro e l’acciaio, due materiali che hanno cambiato la nostra storia, che hanno dato il nome a personaggi della fantasia e della politica: Iron man e l’uomo d’acciaio (Superman) oppure Stalin (in russo Stahl (сталь) vuol dire acciaio) e la frase di Bismarck, “Eisen und Blut”, ferro e sangue, sui destini della Prussia e della Germania*, prodromo della guerra franco-tedesca e della supremazia della Germania in Europa.

Il ferro è anche un protagonista letterario; ricordo qui un romanzo poco conosciuto di uno dei grandi scrittori americani, Jack London; noi tutti lo conosciamo per i romanzi d’avventura del grande Nord, ma (dato che mio padre era un suo estimatore, lo conosco meglio della media) per me Jack London, di idee socialiste fu anche uno scrittore oggi si direbbe di fantascienza, science fiction, descrivendo mondi distopici del futuro in cui lo scontro sociale si sviluppa ai massimi livelli, come in Il tallone di ferro (The Iron Heel) un romanzo sulla lotta sociale portata all’estremo della rivoluzione mondiale.

Ma potrei ricordare La maschera di ferro di Alessandro Dumas, il poema Cold Iron di Rudyard Kipling (l’autore de Il libro della Jungla) o la poesia italiana dal Dante che cuce le palpebre degli invidiosi col filo di ferro (Dante Alighieri canto XIII Purgatorio)

E come a li orbi non approda il sole,
così a l’ombre quivi, ond’io parlo ora,
luce del ciel di sé largir non vole;

ché a tutti un fil di ferro i cigli fóra
e cusce sì, come a sparvier selvaggio
si fa però che queto non dimora.

a Salvatore Quasimodo:

……..
E il vento s’è levato leggero ogni mattina
e il tempo colore di pioggia e di ferro
è passato sulle pietre,
sul nostro chiuso ronzio di maledetti.
Ancora la verità è lontana.
…..

(da Colore di pioggia e ferro, 1949).

Ricordo anche da ragazzo che a Napoli conoscevo “o’ scemo e’ fierro”; non sapete cosa è lo scemo di ferro?

Beh la prima ferrovia italiana fu la Napoli-Portici e negli anni seguenti ci furono molte altre ferrovie nella Campania ottocentesca; la società che costruì molte delle altre ferrovie campane era “Compagnie des Chemins de Fer du Midi de l’Italie”; e dunque nella fertile lingua napoletana, o’ scemo e’ fierro, divenne il nome del treno.

Insomma il ferro è presente fortemente nel nostro immaginario

Come raccontato altrove, si suppone oggi che i primi manufatti in ferro risalgano a 5000 anni fa, 3000 aC, ma si trattava di ferro prevalentemente meteoritico; occorrerà aspettare altri 2000 anni perchè il ferro divenga un bene relativamente comune ed estratto dai suoi minerali.

Abbiamo detto nella prima parte del post che il ferro, a causa della crisi dell’ossigeno di un paio di miliardi di anni fa, si ritrova nella crosta in forma ossidata e dunque la tecnologia di estrazione consiste in una riduzione (si veda la nota in fondo).

La tecnologia della riduzione arrivò in Europa dall’esterno; era diffusa nel 1200aC già in India e nell’Africa sub-sahariana e solo successivamente fu importata nel Mediterraneo dove il bronzo dominava ancora.

Data l’importanza della lega ferro-carbonio diamo un’occhio al diagramma di fase di questa lega:

Da questo grafico vediamo che l’ossido di ferro diventa ferro metallico a temperature molto più basse della fusione che avviene a 1539 °C . Dato che una temperatura così alta è stata a lungo impossibile da raggiungere con i mezzi disponibili il ferro si è ottenuto allo stato solido in forma di spugna porosa, spesso ricca di impurità.

La linea verticale tratteggiata più a sinistra (0.8%) separa il cosiddetto ferro dolce dall’acciaio, che rimane tale fino alla successiva (circa 2%); oltre abbiamo la ghisa con una elevata percentuale di carbonio. Quest’ultimo materiale è fragile e non resisterebbe ai trattamenti che si usavano per purificare il ferro, che consistevano essenzialmente di martellature. L’acciaio mostra proprietà intermedie, è più resiliente e soprattutto si può temprare a caldo, dote ideale per ottenere il bordo affilato, caratteristica primaria di uno strumento da taglio efficace. La tempratura consiste nella brusca riduzione della temperatura che inibendo la diffusione trasferisce a temperature inferiori la struttura caratteristica di quelle superiori.

Il trattamento per martellatura dà il nome al materiale, wrought iron, da una deformazione di “worked” lavorato, in italiano ferro battuto, una massa semifusa di ferro con una bassissima percentuale di carbonio, meno dello 0.1%, ma con una più consistente di impurezze di silice, calcio ed alluminio (fino al 2%) che si rendono visibili meglio al punto di rottura e che vengono espulse tramite azioni meccaniche da forze umane o animali o nei grandi mulini a vento o ad acqua finchè il ferro è ancora caldo (come dice il proverbio: batti il ferro finché è caldo, e dunque può essere purificato, dopo quando la temperatura scende non riesci più ad ottenere il medesimo effetto da cui il senso agisci in tempo finchè puoi). Produrre il ferro era una attività delicata e complessa.

La fornace che parte da minerali di ferro e li mescola con carbone di varia origine viene portata in temperatura mediante l’azione di mantici che soffiano aria, producendo la parziale ossidazione del carbonio ad ossido di carbonio, CO, che è un potente agente riducente gassoso che penetra in una massa compatta contenuta di solito in una materiale resistente alla temperatura, come l’argilla a sua volta almeno parzialmente immersa nel terreno da cui il nome comune di “basso fuoco”..

http://astratto.info/archeometallurgia-e-produzione-metallurgica-nella-storia.html?page=2

https://www.vitantica.net/2017/10/23/siderurgia-antica-i-forni-dell-eta-del-ferro/

Struttura di un “basso fuoco”.

Con l’espressione cast iron invece si indica la lega di Fe-C fra il 2 e il 4% con sempre una certa quantità di silicio; i primi esemplari di questa lega si trovano in Cina nello Jiang-tse e risalgono al 5 secolo aC; erano già allora usati per oggetti che non devono sopportare urti, per esempio nelle costruzioni; di cast-iron cioè di ghisa era fatto il primo ponte europeo in ferro, costruito nel 1770 da Abraham Darby III.

Ironbridge, sul fiume Severn, il più lungo fiume inglese, vicino a Coalbrookdale.

La tecnologia di produzione del ferro e dell’acciaio si è costantemente perfezionata fino allo stadio moderno che risulta notevolmente sofisticato.

Il classico modo di produrre l’acciaio che è il prodotto più interessante dal punto di vista applicativo usa una forno di dimensioni molto grandi, un altoforno, contrapposto al basso fuoco.

Alcuni degli aspetti di questa tecnologia sono stati già ampiamente analizzati in post passati da Fabio Olmi e dal compianto Giorgio Nebbia. In particolare Olmi ha analizzato gli aspetti legati alla tecnologia attuale e Nebbia alla storia dello sviluppo dell’altoforno, perfezionato in parte dal padre di Abraham Darby III, cioè Abraham Darby II. Ma anche da Cowper e poi da Bessemer. Per cui non ripeterò qui quelle storie.

In sintesi l’altoforno estrae il ferro dall’ossido ma al prezzo di introdurvi una notevole quantità di carbonio mentre l’operazione introdotta da Bessemer sulla base delle scoperte di Reamur, che mise a punto il diagramma di fase Fe-C consente di eliminare la quota di C necessaria a trasformare la ghisa in acciaio introducendovi ossigeno gassoso in opportuna quantità. I vari procedimenti che si sono susseguiti nel tempo Bessemer, Thomas, Martin-Siemens sono ormai un ricordo; nel 1948 l’ingegnere svizzero Robert Durrer del tutto fuori dall’ambiente tradizionale del “big steel” introdusse il processo Linz-Donawitz (LD) e ridusse sin dall’inizio i costi degli impianti e tempi di forgiatura, e aumentò considerevolmente la produttività. Sono reazioni che avvengono tutte ad altissima temperatura con notevole rischio per gli addetti.

Questa procedura costituisce il nerbo dell’industria siderurgica mondiale con enormi impianti integrati che collegano altoforni ed acciaierie.

Hanno consentito all’umanità di usare il ferro per le sue costruzioni quotidiane: case, ponti, infrastrutture accumulando una enorme quantità di ferro.

L’evoluzione della produzione dell’acciaio è espressa dal grafico seguente:

Vedete l’incremento eccezionale soprattutto negli ultimi 20 anni, dovuto essenzialmente alla Cina; siamo ormai a 1.8 miliardi di ton nel 2018 di cui la Cina ne ha prodotto poco più del 50%; se consideriamo la produzione procapite si chiarisce ancor più la situazione:

https://www.worldsteel.org/en/dam/jcr:96d7a585-e6b2-4d63-b943-4cd9ab621a91/World%2520Steel%2520in%2520Figures%25202019.pdf

Scrivono Roland Döhrn and Karoline Krätschell

Our analysis confirms that there seems to be an increase of steel demand in an initial stage of economic development and a decline after economies have reached a certain level of per capita income.

http://www.rwi-essen.de/media/content/pages/publikationen/ruhr-economic-papers/REP_13_415.pdf

In sostanza la maggior parte degli autori collega il reddito e la produzione di acciaio; durante la storia dello sviluppo economico la maggior parte dei paesi sembra correlare il proprio sviluppo economico con il consumo di acciaio usato per molteplici beni durevoli: case, auto, oggetti per la casa, ma anche armi e impianti industriali.

Con la continuazione della crescita lo stock di acciaio si stabilizza e si passa ad altri beni, per esempio aumenta il consumo di alluminio o di rame o di altri elementi, ma l’acciaio e dunque il ferro costituiscono lo stadio basilare dello sviluppo economico.

Questo processo fa cambiare anche il modo di produrre l’acciaio, perché in molti dei paesi “maturi” cresce l’importanza dell’acciaio prodotto per via elettrica, ossia senza passare per la ghisa degli impianti tradizionali ma per il rottame proveniente dal riciclo. Attualmente a livello mondiale circa un 30% dell’acciaio viene da questa fonte. Questa è anche la storia dell’acciaio italiano, dove i grandi impianti storici come Bagnoli o Piombino sono scomparsi lasciando spazio solo a Taranto, mentre l’acciaio elettrico, il tondino del cemento armato ha fatto sviluppare una miriade di piccole e medie imprese soprattutto al Nord, fra Brescia e Bergamo, ricordiamo la Dalmine fra tutte.

Ma c’è ancora un altra cosa da considerare ossia che entrano in gioco altri metodi di produzione diversi da quelli tradizionali, per esempio la cosiddetta riduzione diretta del minerale di ferro, consistente nella sostituzione del carbone come riducente con altri mezzi riducenti

Sono state sviluppate diverse tecnologie di riduzione/fusione diretta in cui il minerale viene ridotto senza fusione con gas riducenti e inviato a un forno di fusione con carbon fossile e ossigeno. Nel forno si sviluppano i gas riducenti che vengono usati per ridurre altro minerale.

Questi metodi oggi riguardano una percentuale ancora piccola del minerale ma la loro importanza è destinata a crescere nel tempo.

Un ultimo aspetto che vorrei citare è quello della corrosione del ferro; la ruggine, come stadio finale della vita del ferro è spesso usata come simbolo della morte, del disfacimento, ma è anche considerata una condizione inevitabile. L’aspetto scientifico è anche molto interessante e merita un post a se; ha stimolato lo sviluppo di materiali come l’acciaio inossidabile, una lega di ferro e cromo che resiste bene alla corrosione in quasi tutti gli ambienti.

Eppure esiste la prova storica e inamovibile che il ferro prodotto in modo opportuno resiste bene alla corrosione. Si tratta della cosidetta colonna di ferro, un monumento indiano del V sec dC a Dehli.

La colonna di ferro di Dehli, 400 dC. mostra una ottima resistenza alla corrosione dovuta allo strato superficiale di fosfato di ferro idrato.

Pesante circa 6 ton si pensa sia stata prodotta in India ad Udayagiri e poi riusata a Dehli dai re Gupta. Essa ha attratto l’attenzione degli archeologi e degli scienziati per la sua elevata resistenza alla corrosione che si pensa venga dalla costituzione superficiale , un fosfato di ferro idrato formatosi su un minerale ad elevata percentuale di fosforo.

Questa colona è l’antenata di un più moderno materiale che è entrato nella industria delle costruzioni col nome di acciaio patinabile (weathering steel), o più comunemente COR-TEN.

Il COR-TEN (da corrosion resistant e tensile stength, dunque forte e resistente) è oggi usato nella costruzione di ponti e altri manufatti durevoli e deve la sua resistenza alla corrosione ad una struttura analoga a quella della colonna di Dehli. Si autoprotegge dalla corrosione tramite una patina degli ossidi dei suoi elementi di lega. Tale strato si forma in un tempo relativamente lungo di mesi per

  • esposizione all’atmosfera;
  • alternanza di cicli di bagnamento-asciugamento;
  • assenza di ristagni e/o contatti permanenti con acqua.

Si tratta di un materiale molto interessante anche se al momento non può essere usato nel cemento armato.

Il ferro ha un grande passato ma anche un notevole futuro e la sua abbondanza lo rende un elemento chiave nella nostra strategia tecnologica per un futuro sostenibile.

Ponte Amedeo IX il beato a Torino. Fotografia di Fabrizio Diciotti, 2012  IL nuovo ponte strallato sulla Dora ha una luce di 43 metri ed è costituito di acciaio COR-TEN

Nota dell’autore.

Dal punto di vista chimico la metallurgia umana è la fortunata applicazione dei criteri e dati esprimibili dalla tabella qua sotto:

https://chem.libretexts.org/Bookshelves/General_Chemistry/Book%3A_ChemPRIME_(Moore_et_al.)/22Metals/22.04%3A_Reduction_of_Metals

L’ossidazione del carbonio (anche se comunemente in forma di monossido) fornisce l’energia libera per la riduzione degli ossidi metallici; come si vede dalla tabella a t ambiente sarebbe possibile solo per argento e mercurio; ma dato che al crescere della temperatura l’energia libera di riduzione del metallo diminuisce (essenzialmente perché l’entropia connessa con la formazione dell’ossigeno aumenta!!! e ricordiamo ΔG=ΔH-TΔS) anche il ferro e lo stagno diventano accessibili; invece l’alluminio o il magnesio non possono essere ridotti in questo modo e dunque si ricorre a reazioni elettrochimiche in cui l’energia elettrica fornita aiuta a superare il gap termodinamico.

*«La posizione della Prussia in Germania non sarà determinata dal suo liberalismo ma dalla sua potenza […] La Prussia deve concentrare la sua forza e tenerla per il momento favorevole, che è già venuto e andato diverse volte. Sin dai trattati di Vienna, le nostre frontiere sono state mal designate a favore di un corpo politico sano. Non con discorsi, né con le delibere della maggioranza si risolvono i grandi problemi della nostra epoca – questo fu il grande errore del 1848 e del 1849 – ma col ferro e col sangue (Eisen und Blut).»
(Otto von Bismarck nel settembre 1862 per far approvare le spese militari del nuovo regno)

Origine dell’oro

In evidenza

Diego Tesauro

L’oro ha avuto origine come tutti gli elementi pesanti della tavola periodica, in particolare quelli della terza serie di transizione, da processi di accrescimento dei nuclei atomici più leggeri con acquisizioni di neutroni secondo due modalità: una rapida, processo r, (https://it.wikipedia.org/wiki/Processo_r), l’altra lenta processo s ((https://it.wikipedia.org/wiki/Processo_s).

I due processi si verificano entrambi nelle fasi finali dell’evoluzione stellare. In particolare il processo r avviene in pochi secondi nelle esplosioni di supernove di stelle massicce (superiori alle 8 masse solari). Oggi si ritiene però che gli elementi pesanti si ottengono soprattutto nella fusione di sistemi binari di stelle di neutroni, cioè di stelle dalle dimensioni ridotte con diametro di circa 20 chilometri, ma con una massa compresa tra 1.4 e 3.0 masse solari, quindi estremamente dense, di densità uguale a quella del nucleo dell’atomo. Un fenomeno del genere è stato osservato di recente con gli esperimenti Virgo e Ligo che hanno consentito per la prima volta di rilevare le onde gravitazionali [1]. Il processo S si verifica invece nelle stelle giganti rosse AGB ed è appunto più lento avendo una durata di migliaia di anni. Questo processo produce gli elementi più pesanti dell’ittrio fino al piombo in stelle giganti a bassa contenuto di elementi diversi da idrogeno ed elio e di piccola mass

In entrambi i casi, lo spazio e le nebulose, da cui si generano le stelle, risulteranno contaminate da elementi pesanti, tra i quali l’oro, che quindi entrano nella formazione dei nuovi sistemi planetari. Così è avvenuto anche per il nostro sistema solare. L’oro, come anche il platino e gli altri elementi di transizione della terza serie, pertanto è presente, come in tutti i pianeti, nel nucleo della Terra. In effetti, nel nucleo ci sono metalli preziosi in quantità sufficiente da coprire l’intera superficie della Terra con uno strato spesso quattro metri. Tuttavia, l’oro è presente nel mantello e nella crosta. Nel mantello è decine o migliaia di volte più abbondante del previsto. Ed anche la presenza sulla crosta terrestre è più alta di quella proposta dai modelli. L’oro infatti pur essendo un elemento raro, lo dovrebbe essere ancora di più rispetto a quei 1.3 g per 1000 tonnellate di materiale della crosta. Questa anomalia venne spiegata a favore di una provenienza meteorica dovuta all’intenso bombardamento che ha subito la Terra oltre 200 milioni di anni dopo la sua formazione. Questa teoria era stata avvalorata dalle missioni Apollo sulla Luna. Infatti la presenza dell’oro in maggior misura nella crosta del satellite, rispetto al mantello, avvaloravano l’ipotesi relativa ad una provenienza esterna. Una conferma di questa teoria è venuta nel 2011 [2]. L’ analisi di rocce, presenti in Groenlandia molto antiche e risalenti ad un’epoca precedente il bombardamento meteorico, ha rilevato una composizione diversa rispetto a quella delle rocce moderne relativamente agli isotopi del tungsteno altro elemento molto raro e della medesima origine dell’oro. In particolare è stata rilevata una diminuzione di 15 parti per milione nella abbondanza relativa dell’isotopo 182W rispetto alle rocce moderne. Questo dato è una conferma che la superficie terrestre è stata arricchita di elementi pesanti solo successivamente alla sua formazione.

[1] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration) GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral Phys. Rev. Lett. 2017 119, 161101

[2] Matthias Willbold, Tim Elliott & Stephen Moorbath The tungsten isotopic composition of the Earth’s mantle before the terminal bombardment Nature 2011 477, 195–198 .

Elementi della tavola periodica: Ferro, Fe. 1. La biogeochimica del ferro.

In evidenza

Claudio Della Volpe

The world is moral still you know
and Nature’s wheels do grind

Put ferric P into the sea
and a rose someday you’ll find

Cycle of P, di R.M. Garrels

I colleghi mi scuseranno se torno sul ferro, sul quale ci sono stati già parecchi post qui, qui e qui, di cui uno molto recente, ma l’importanza di questo elemento non può essere sottovalutata in nessun contesto; solo che presenterò il mio punto di vista rovesciando l’approccio tradizionale: prima la biogeochimica e poi l’industria siderurgica. Cosa come vedremo ampiamente giustificata.

Il ferro è l’elemento metallico più abbondante del pianeta Terra, ma la sua abbondanza decresce dal centro verso la periferia; infatti mentre in totale l’abbondanza è del 16%, quella della sola crosta è del 4.75. Nella crosta viene dunque superato dall’Alluminio e dal Calcio. Nel nucleo invece l’abbondanza raggiunge il 20% o superiore.

Si tratta di un elemento fondamentale nell’Universo, il più pesante prodotto dalla nucleosintesi stellare delle stelle massicce e si ipotizza che l’Universo nel futuro sarà fatto di ferro; queste due cose discendono dal fatto che l’isotopo 56 del ferro è il nucleo con la maggiore energia di legame, dunque il più stabile.

Ne consegue che la prima riflessione da fare è che il ferro che troviamo sulla Terra o altrove è già stato nel cuore di qualche stella, è un elemento che ne ha viste di caldissime e grandissime un vero elemento del nucleo, in ogni senso.

Il nome del ferro ha una origine complessa; la parola ferro è una parola tardolatina medioevale e viene probabilmente da fer, portare; o da una radice indoeuropea comune phars, essere rigido, mentre la parola siderurgia viene direttamente dal greco σιδηρο-, forma compositiva di σίδηρος «ferro», che ci riporta al fatto che il primo ferro conosciuto dagli uomini viene dal cielo, dalle meteoriti che cadevano dal cielo ed era ritenuto un metallo degli dei.

Il che, per tutto quel che abbiamo detto, è sorprendentemente corretto.

Come raccontato altrove, il ferro lo usiamo da almeno 5000 anni, ma la capacità di estrarlo dai minerali la abbiamo acquisita con lunghe prove e la possediamo da soli 3500 anni circa; quando imparammo a farlo, data la capacità del ferro di essere fra i più duri e resilienti materiali che avevamo a disposizione cambiò la vita di tutti e la loro organizzazione sociale. L’età del ferro è stata certo un’eta di rivoluzioni e scontri, dal 2000 aC in poi; al principio del I millennio aC il ferro era entrato ormai nella cultura e nell’uso comuni, sbaragliando il bronzo e le armi costruite con esso.

Le armi di Omero, le armi degli Achei dagli occhi cerulei, erano di bronzo, (anche se le tattiche militari sembrano quelle più tarde dell’età del ferro) ma quelle dei Romani erano di ferro. Questo è un argomento che meriterebbe più spazio, ma lo riprenderò nella seconda parte del post.

Si dice raramente che il Ferro presenta quattro allotropi: α, β, γ e δ, per cui il suo diagramma di fase è il seguente:

 il ferro alfa esiste a temperature inferiori a 768 °C; magnetico.
il ferro beta esiste a temperature comprese tra 768/770 °C e 910 °C; presenta una perdita delle caratteristiche magnetiche e alta duttilità.
il ferro gamma esiste a temperature comprese tra 910 °C e 1 394 °C; scioglie carbonio.
il ferro delta esiste a temperature comprese tra 1 394 °C e 1 538 °C.

Il ferro ha quattro isotopi stabili il già nominato 56, il più abbondante, 54, 57, 58. Presente in genere come ossido nella crosta, può avere comunque numeri di ossidazione +2, +3, +4, +6.

Dal ciclo globale rappresentato qui sopra , estratto sempre dal classico lavoro di Rauch e Pacyna, più volte citato sul blog, si evince che il ferro è principalmente un metallo presente in Natura e i cui flussi e depositi naturali sono dominanti su quelli umani; dunque la mia scelta di privilegiare il ciclo biogeochimico è ragionevole. Comunque questi dati sono del 2000 e vedremo nella seconda parte del post che il flusso del ferro nella società umana è raddoppiato e che dunque oggi il flusso indicato fra Production e Fabrication è passato da 850 a 1700 milioni di ton, mentre tutti gli altri flussi in figura sono rimasti costanti. Notate come lo stock umano è simile come dimensioni a quello presente in tutte le acque dolci, decine di miliardi di ton e che questo a sua volta è maggiore di quello presente nell’oceano.

Data la complessità del ciclo lo ripresento in modo più qualitativo in quest’altra immagine tratta da Wikipedia e nella quale risulta chiaro che il ferro è presente sia a livello liquido e solido che in atmosfera, non certo perchè esistano composti gassosi del ferro, ma perchè il ferro domina la composizione della polvere e delle ceneri vulcaniche. Tramite questa forma il ferro penetra nell’Oceano. Tuttavia data la condizione ossidante dell’oceano il ferro come tale è uno dei metalli meno concentrati, al contrario dell’alluminio. Una volta ossidato infatti esso formando ossidi ed idrossidi precipita nello stock del fondo.

La maggioranza dei minerali di ferro, dei depositi di ferro sono ossidi e vengono dall’ultima tragedia biologica veramente grande, ossia l’invasione dell’ossigeno.

https://geology.com/rocks/iron-ore.shtml

Ematite di ferro oolitica.

Quasi tutti i maggiori depositi di ferro sono in rocce che si formarono oltre 1.8 miliardi di anni fa. A quell’epoca gli oceani della Terra contenevano ferro disciolto in abbondanza e quasi niente ossigeno. I depositi di ferro si iniziarono a formare quando i primi organismi capaci di fotosintesi cominciarono a rilasciare ossigeno nell’acqua. Questo ossigeno immediatamente si combinò con il ferro ivi disciolto in abbondanza per produrre ematite o magnetite. Questi minerali si depositarono sul fondo oceanico in grande quantità formando quelle che sono chiamate “formazioni di ferro a bande”. Le rocce con le bande sono costituite da depositi di minerali di ferro depositato in bande alternate con silice e a volte materiali organici trasformati in petrolio o gas. Le bande sono probabilmente il risultato dell’attività stagionale degli organismi viventi.

Il ferro è rimasto un elemento chiave per la crescita e lo sviluppo degli organismi viventi, ma la sua concentrazione oceanica è grandemente diminuita; in questo senso si parla di micronutriente e di elemento limitante; questo concetto fu proposto per la prima volta da Joseph Hart negli anni 30 del secolo scorso; egli notò che ci sono ampie zone marine in cui la vita è assente anche se i macronutrienti sono presenti e ne dedusse che mancava qualcosa (si tratta delle cosiddette zone HNLC, ossia High Nutrient-Low Chlorophyll). Il discorso fu ripreso negli anni 80 e poi riapprofondito usando tecniche satellitari.

Oggi si pensa che il micronutriente mancante sia proprio il ferro, tanto che si sono fatti vari esperimenti per dimostrare che aggiungendo ferro all’oceano in forma di microparticelle, come quelle che si depositerebbero naturalmente da eruzioni vulcaniche, si ha uno sviluppo esplosivo di organismi viventi fotosintetici con potenziale enorme assorbimento di biossido di carbonio. Ovviamente l’idea viene vista anche come una possibile soluzione al problema del global warming, ma in realtà la cosa non è ancora del tutto chiara, proprio perchè i cicli biogeochimici non sono ancora ben compresi in tutta la loro eccezionale complessità, per cui dati i molteplici effetti di retroazione possibili, questa rimane una ipotesi, sia pure robusta. (https://www.niwa.co.nz/iron-fertilisation). Recentemente si è ipotizzato che anche altri micronutrienti come lo Zinco siano necessari per lo sviluppo del fitoplancton.

Il ferro arriva nell’oceano dalle ceneri vulcaniche e dalla polvere, dalle acque dei ghiacciai e dalle sorgenti idrotermali lungo i margini delle zolle continentali. Parecchio ferro è in forma complessa, non come ione +2 o +3.

Il ferro è un bioelemento essenziale per la maggior parte delle forme di vita dai batteri ai mammiferi. La sua importanza nasce dall’abilità di mediare il trasferimento di elettroni.

Nello stato ferroso, Fe+2, esso agisce come un donatore di elettroni mentre in quello ferrico, Fe+3, come un accettore. Per questo motivo esso gioca un ruolo vitale nella catalisi delle reazioni enzimatiche che coinvolgano un trasferimento di elettroni, cioè nelle reazioni di ossidoriduzione. Le proteine possono contenere il ferro come parte di diversi cofattori, come per esempio i clusters Fe-S e nei gruppi eme; in queste forme il ferro è coinvolto in un numero incredibile di reazioni essenziali della cellula (pensiamo solo alla nostra emoglobina che ci serve a respirare).

In un certo senso il ferro esemplifica il comportamento contraddittorio e dialettico di molte sostanze nel complesso delle reazioni biologiche; da una parte è essenziale per il motivo che abbiamo appena detto, ma d’altra parte ha la potenzialità di diventare deleterio.

Al pH e alla pressione parziale di ossigeno considerate fisiologiche Fe(II) è facilmente ossidato a Fe(III), che a sua volta si trasforma rapidamente nelle forme polimeriche insolubili di Fe(OH)3.

https://geoweb.princeton.edu/research/geochemistry/research/aqueous-polymers.html

Inoltre, se non appropriatamente chelato a causa della sua azione catalitica nelle reazioni redox ad un elettrone, il ferro gioca un ruolo nella formazione dei radicali ossigeno che costituiscono la causa del danno perossidativo per la cellula.

Dunque gli organismi sono obbligati a risolvere questo paradosso; da una parte mantenere il ferro libero al più basso livello possibile ma dall’altra comunque ad un livello tale da supportare la sintesi adeguata di emoproteine e altre proteine contenenti ferro.

Per fare questo gli organismi viventi hanno sviluppato molecole specializzate per acquisire, trasportare e stoccare il ferro in una forma contemporaneamente solubile ma non tossica. E naturalmente questo traffico del ferro abbisogna di un meccanismo sofisticato di controllo.

Ecco in poche parole raccontato il ruolo del ferro nella biosfera e nell’organismo, prima che nella nostra società, argomento al quale sarà dedicata la seconda parte di questo post.

Riferimenti

Earth’s global Ag, Al, Cr, Cu, Fe, Ni, Pb, and Zn cycles Jason N. Rauch and Jozef M. Pacyna 
 GLOBAL BIOGEOCHEMICAL CYCLES, VOL. 23, GB2001, doi:10.1029/2008GB003376, 2009

http://www.homepages.ed.ac.uk/shs/Climatechange/Carbon%20sequestration/Martin%20iron.htm

https://www.sciencedirect.com/science/article/pii/S0085253815462301

Kidney International

Volume 55, Supplement 69, March 1999, Pages S2-S11

Cellular iron metabolism di Prem Ponka

(continua)

Un ricordo di Giorgio Nebbia.

In evidenza

Claudio Della Volpe

Questo post è basato in piccola parte sui miei ricordi ma soprattutto sulla formidabile intervista fatta a Giorgio Nebbia nel 2016 da Luigi Piccioni e riportata qui; dura quasi tre ore e se avete pazienza è molto interessante, quasi un archivio della cultura e della vita italiana del 900 attraverso gli occhi di un protagonista.

Come tutti i lettori sanno Giorgio è stato redattore anche di questo blog, una delle tante attività che ha svolto nel suo quasi-secolo di vita attivissima. Dunque questo breve ricordo gli è dovuto. Se volete cercare gli articoli con i quali ha contribuito al nostro blog basta che mettiate “Nebbia” nella finestrella in alto a destra, ne troverete decine. Giorgio era stato nominato socio onorario della SCI, su mia proposta, prima del 2010.

Giorgio Nebbia nasce a Bologna nell’aprile 1926, da una famiglia che era però metà toscana e in Toscana rimarrà un pezzo di cuore fra Livorno e Massa, dove il padre aveva costruito, a Poveromo, una casetta delle vacanze, in via delle Macchie.

Ma il sogno piccolo borghese della famiglia impiegatizia di Giorgio dura poco, perché la crisi del 29 fa perdere il lavoro al padre; e segue dunque un periodo di ristrettezze che culmina poi durante la guerra con la morte del padre e il ritorno a Bologna, che era la patria della mamma.

Qui si inizia il percorso universitario di Giorgio, nel primissimo dopoguerra; in un primo momento iscritto a ingegneria e studente lavoratore, conosce per caso colui che diventerà suo mentore, Walter Ciusa, allora associato di merceologia a Bologna, che lo assume come collaboratore del suo lavoro accademico. Giorgio aveva conoscenza dell’inglese, disegnava bene e questo lo rende già un buon collaboratore; in questo periodo Giorgio incontra la chimica analitica e si scopre un buon analista; Ciusa più tardi gli consiglia di lasciare ingegneria ed iscriversi a Chimica; Giorgio si iscrive a Chimica a Bari, dove pensava di riuscire a laurearsi prima e infatti si laurea nel 1949. In un articolo del 2011 lui stesso ci racconta il contenuto della tesi di laurea.

Nei primi del Novecento i perfezionamenti dei metodi di analisi chimica consentirono di separare e caratterizzare numerose sostanze che si rivelarono cancerogene. Si trattava in gran parte di idrocarburi aromatici policiclici, contenenti diecine di atomi di carbonio e idrogeno uniti fra loro in “anelli”. La svolta fondamentale si ebbe con le ricerche condotte negli anni trenta del Novecento da James Wilfred Cook (1900-1975) che preparò per sintesi numerosi idrocarburi policiclici ad alto grado di purezza con cui fu possibile riconoscere il vario grado di cancerogenicità di ciascuno. Il più tossico si rivelò appunto il 3,4-benzopirene, generalmente indicato come benzo(a)pirene per distinguerlo dal benzo(e)pirene (4,5-benzopirene) che ha lo stesso numero di atomi di carbonio e idrogeno, ma disposti diversamente. Negli anni 40 fu possibile anche identificare a quali strutture molecolari era maggiormente associata l’attività cancerogena. Per inciso è stato l’argomento della mia tesi di laurea in chimica nel 1949 nell’Università di Bari e di un successivo libro.”

Il libro è Maria Prato e G. Nebbia, “Le sostanze cancerogene”, Bari, Leonardo da Vinci Editore, 1950, 151 pp.

A questo punto quello che lui stesso descrive come un colpo di fortuna; Ciusa diventa ordinario di Merceologia e lo chiama come assistente a Bologna, a soli 5 giorni dalla laurea. Per la prima volta Giorgio ha un vero lavoro pagato dallo Stato, come lui stesso dice orgogliosamente. Questo ruolo di assistente alla cattedra di merceologia Giorgio lo manterrà per dieci anni fino al 1959.

La merceologia nell’idea di Nebbia è “il racconto di come si fanno le cose”, ereditato da un Ciusa che era a sua volta molto interessato alla storia delle merci ed alla loro evoluzione. Nebbia dunque raccoglie insieme l’eredità culturale del mondo chimico ma anche di quello umanistico , una impostazione a cui rimarrà sempre fedele.

In questi anni il grosso della sua attività di ricerca è dedicato ai metodi della chimica analitica e pubblica anche in tedesco.

Nel 1959 viene chiamato a coprire la cattedra di merceologia a Bari.

Giorgio Nebbia, secondo da sinistra a Bari negli anni 60, con alcuni collaboratori ed un distillatore solare sul tetto dell’università.

Questo segna un cambiamento nell’indirizzo delle sue ricerche; quelle che gli erano state rimproverate a volte come le “curiosità” o perfino capricci da Ciusa o da altri, entrano con maggiore peso nella sua attività di ricerca; entrano in gioco, l’energia, l’acqua, l’ambiente; rimane l’interesse per le merci e la loro storia tanto che si sobbarca un corso di Storia delle merci provenienti da paesi asiatici, ma la sensibilità per l’acqua, che dopo tutto è una merce basica, per l’energia che è anche una merce (e che merce!) crescono. Di questo periodo mi fa piacere ricordare un articolo brevissimo con cui corresse un altro breve articolo su Journal Chemical Education , 1969, e che riporto qui sotto integralmente. Si tratta di un argomento affascinante e di grande impatto didattico e culturale: chi è più efficiente la Volkswagen o il colibrì?

Nebbia trova un errore nell’ultimo conticino di Gerlach che ne inverte radicalmente il senso.

Come potete vedere la sua conclusione ha un impatto che oserei definire filosofico; l’”unità termodinamica del mondo”; un concetto che condivido totalmente e che sarebbe utile far condividere ai nostri politici più illustri ed ai loro “esperti” che di solito la termodinamica non se la filano molto.

Giorgio Nebbia fine anni 70, era consigliere comunale a Massa e presidente della Società degli Amici di Ronchi e Poveromo. Erano gli anni in cui partecipò alle mobilitazioni contro l’inquinamento generato dalla Farmoplant.

 

Inizia con gli anni 70 la fase che potremmo definire ambientalista di Nebbia. Gli impegni sui temi dell’acqua, dell’energia, della dissalazione, dei rifiuti si saldano con una visione che di base è cattolica, ma che vira rapidamente verso sinistra.

Dunque di questi anni è l’impegno nella costruzione di associazioni ambientaliste grandi e piccole, di una divulgazione che ha prodotto nel tempo migliaia di articoli che sono conservati con tutto l’archivio dei libri e dati presso la Fondazione Micheletti.

Gli articoli di Giorgio assommano ad oltre 2000; di questi una rapida ricerca su Google Scholar ne fa trovare 450 dei quali articoli di tipo scientifico sono oltre 130. Purtroppo non riuscite a metterli in ordine temporale perchè probabilmente Giorgio non si era mai iscritto a Google Scholar che d’altronde è nato DOPO che lui era andato in pensione; comunque è una lettura utile a scandire la varietà di interessi che si sono susseguiti nel tempo.

Durante gli anni 80 viene eletto due volte in Parlamento per la Sinistra Indipendente prima come deputato nella IX legislatura (1983-87) e poi come senatore nella X (1987-92). Sono gli anni in cui si discute del nucleare e si vota il primo referendum antinucleare (1987) nel quale Giorgio costituisce un punto di riferimento degli antinuclearisti. D’altronde rimarrà tale anche nel corso del secondo referendum , quello del 2011. Quello fu un periodo eccezionale per la chimica italiana ripetto alla politica; erano in parlamento parecchi chimici fra i quali oltre Giorgio vale la pena di ricordare Enzo Tiezzi.

Nel 1995 va in pensione, ma continua la sua attività pubblicistica sia con libri che che sui quotidiani e sulle riviste.

Era stato nominato professore emerito, ed ottenne le lauree honoris causa in scienze economiche e sociali dall’Università del Molise e in economia e commercio dagli atenei di Bari e Foggia.

Personalmente ho conosciuto Giorgio in questa più recente fase della sua vita, perché era iscritto alla lista di discussione sulla merce regina, il petrolio, una lista che era stata messa su da Ugo Bardi quando aveva fondato l’associazione ASPO-Italia, per studiare il picco del petrolio. Non ci siamo mai incontrati di persona ma ci siamo sentiti varie volte; ovviamente non mi era sconosciuto, anzi avevo già letto molte cose scritte da lui fin da studente e mi sentivo un po’ imbarazzato a parlargli così come se fosse uno qualunque.

Giorgio come altri “grandi” che ho conosciuto era di una semplicità disarmante, rispondeva personalmente alle chiamate ed alle mails, non c’era alcun filtro col pubblico.

Aveva scoperto da solo che avevo un mio blog personale, sul quale esponevo le mie idee sullle cose del mondo e ovviamente le nostre idee politiche erano molto consonanti; subito mi propose di conservarne copia; era uno che conservava tutto, faceva copia di tutto; sembra che conservasse anche i biglietti del tram.

Mi battei con successo per farlo nominare socio onorario della SCI e gli proposi di collaborare col nascente blog della SCI; lui aderì con entusiasmo e fece subito varie proposte di successo, come la serie di articoli: Chi gli ha dato il nome? Dedicata a strumenti o dispositivi di laboratorio di cui ricostruì la storia; ed anche un’altra serie di post di successo è stata quella dedicata alla economia circolare; nei quali l’idea di base era che l’economia circolare non è una invenzione recente ma la riscoperta di qualcosa che l’industria chimica ha nel suo DNA.

Era poi una continua risorsa per la ricostruzione della Storia della Chimica nei suoi più disparati aspetti. A partire dalla storia del Parlamento italiano ovviamente e del ruolo che vi avevano avuto chimici come Avogadro e Cannizzaro.

Quando compì 90 anni ebbe una festa par suo, dunque condita di pubblicazioni varie ; la più interessante delle quali è la raccolta di suoi scritti

Un quaderno speciale di Altro900 con scritti di Giorgio si può scaricare da: http://www.fondazionemicheletti.eu/altronovecento/quaderni/4/AltroNovecento-4_Nebbia-Piccioni_Scritti-di-storia-dell-ambiente.pdf

Il testamento di Giorgio:

http://www.fondazionemicheletti.it/nebbia/sm-4014-lettera-dal-2100-2018/

Giorgio ci ha anche lasciato un testamento ed è un testamento particolare, uno scritto che è una sorta di piccolo romanzo di fantascienza ma anche scritto politico, ma anche novella breve ma anche lettera, una lettera dal futuro, la lettera dal 2100 in cui immagina di ricevere una lettera da chi ha vissuto e ormai digerito le gigantesche trasformazioni che stiamo vivendo. Scritta nel 2018 e pubblicata da Pier Paolo Poggio (a cura di), “Comunismo eretico e pensiero critico”, volume V, JacaBook e Fondazione Luigi Micheletti, p. 47-60, ottobre 2018, ve ne accludo qualche brano.

La crisi economica e ambientale dell’inizio del ventesimo secolo è dovuta e esacerbata dalle regole, ormai globalmente adottate, della società capitalistica basata sulla proprietà privata dei mezzi di produzione e sul dogma dell’aumento del possesso e dei consumi dei beni materiali. E’ possibile prevedere — come ci scrivono dall’inizio del XXII secolo — la trasformazione della società attuale in una società postcapitalistica comunitaria in grado di soddisfare, con le risorse naturali esistenti, una popolazione terrestre di dieci miliardi di persone con minore impoverimento delle risorse naturali e con minori inquinamenti e danni ambientali. …….. Nella società comunitaria i bisogni di ciascuna persona vengono soddisfatti con il lavoro a cui ciascuna persona è tenuto, nell’ambito delle sue capacità, nell’agricoltura, nelle industrie e nei servizi….

La inaccettabile differenza fra la ricchezza dei vari paesi, misurata in arbitrarie unità monetarie, che caratterizzava il mondo all’inizio del 2000 ha portato all’attuale revisione delle forme di pagamento delle merci e del lavoro, su scala internazionale, in unità fisiche, legate al consumo di energia, e al numero di ore di lavoro necessarie per ottenere ciascuna merce e servizio. Queste unità sono regolate su scala internazionale da una banca centrale comunitaria……

La transizione ha comportato una grande modifica della struttura dell’agricoltura e delle foreste, la principale fonte degli alimenti e di molti materiali da costruzione….

Ogni persona ogni anno, in media, ha bisogno di alimenti costituiti da circa 300 kg di sostanze nutritive (carboidrati, grassi, proteine animali e vegetali, grassi, eccetera) ottenibili con la produzione di circa 1000 kg/anno, circa 10 miliardi di tonnellate all’anno, di prodotti vegetali e animali. La coltivazione intensiva dei suoli, con forti apporti di concimi e pesticidi, è stata sostituita da coltivazioni di superfici di suolo adatte a fornire principalmente alimenti alle comunità vicine, con la prevalente partecipazione al lavoro dei membri di ciascuna comunità. Venuta meno la proprietà privata dei terreni agricoli si è visto che la superficie disponibile era largamente sufficiente a soddisfare i fabbisogni alimentari mondiali……

L’altra grande materia naturale essenziale per soddisfare i bisogni elementari umani è costituita dall’acqua: sul pianeta Terra, fra oceani e continenti, si trova una riserva, uno stock, di circa 1.400 milioni di chilometri cubi di acqua; la maggior parte è nei mari e negli oceani sotto forma di acqua salina, inutilizzabile dagli esseri umani; solo il 3 per cento di tutta l’acqua del pianeta è presente sotto forma di acqua dolce, priva o povera di sali, e la maggior parte di questa è allo stato solido, come ghiaccio, nei ghiacciai polari e di montagna; resta una frazione (circa 10 milioni di km3) di acqua dolce liquida che si trova nel sottosuolo, nei laghi, nei fiumi……

Una parte di questo fabbisogno è soddisfatto con l’acqua recuperata dal trattamento e depurazione delle acque usate, sia domestiche, sia zootecniche, grazie ai progressi in tali tecniche che permettono di ottenere acqua usabile in agricoltura e in attività non domestiche; si ottengono anche fanghi di depurazione dai quali è possibile ottenere per fermentazione metano usato come combustibile (contabilizzato come energia dalla biomassa)……

Operazioni che erano difficili quando grandi masse di persone abitavano grandi città lontane dalle attività agricole e che ora sono rese possibili della diffusione di piccole comunità urbane integrate nei terreni agricoli…….

Non ci sono dati sui consumi di acqua nelle varie attività industriali, alcune delle quali usano l’acqua soltanto a fini di raffreddamento e la restituiscono nei corpi naturali da cui l’hanno prelevata (fiumi, laghi) nella stessa quantità e soltanto con una più elevata temperatura (inquinamento termico)……

In particolari casi di emergenza acqua dolce viene ricavata anche dal mare con processi di dissalazione che usano elettricità, come i processi di osmosi inversa.

Dopo il cibo e l’acqua il principale bisogno delle società umane è rappresentato dall’energia che è indispensabile, sotto forma di calore e di elettricità, per produrre le merci, consente gli spostamenti, contribuisce alla diffusione delle conoscenze e dell’informazione e permette di difendersi dal freddo…….

Il programma delle nuove comunità è stato basato sul principio di graduale eliminazione del ricorso ai combustibili fossili, il cui uso è limitato alla produzione di alcuni combustibili liquidi e di alcune materie prime industriali in alcune produzioni metallurgiche, e nella chimica, e di contemporanea chiusura di tutte le centrali nucleari……

L’energia necessaria per le attività umane, 600 EJ/anno è principalmente derivata direttamente o indirettamente dal Sole.

Oggi è stato possibile contenere il fabbisogno di energia dei 10 miliardi abitanti del pianeta a 600 GJ/anno, con una disponibilità media di circa 60 GJ/anno.persona (equivalente a circa 18.000 kWh/anno.persona e ad una potenza di circa 2000 watt), e oscillazioni fra 50 e 80 GJ/anno.persona a seconda del clima e delle condizioni produttive. Questo significa che i paesi con più alti consumi e sprechi sono stati costretti a contenere tali consumi agli usi più essenziali, in modo da assicurare ai paesi più poveri una disponibilità di energia sufficiente ad una vita decente.

Una “società a 2000 watt” era stata auspicata già cento anni fa come risposta al pericolo di esaurimento delle riserve di combustibili fossili e alle crescenti emissioni di gas serra nell’atmosfera…….

Ai fini dell’utilizzazione “umana” dell’energia solare va notato subito che l’intensità della radiazione solare è maggiore nei paesi meno abitati; molti dei paesi che un secolo fa erano arretrati, hanno potuto uscire dalla miseria proprio grazie all’uso dell’energia solare; la società comunitaria ha così potuto contribuire a ristabilire una forma di giustizia distributiva energetica fra i diversi paesi della Terra, realizzando la profezia formulata due secoli fa dal professore italiano Giacomo Ciamician, “i paesi tropicali ospiterebbero di nuovo la civiltà che in questo modo tornerebbe ai suoi luoghi di origine“……..

La struttura economica della società comunitaria richiede molti macchinari e oggetti e strumenti che devono essere fabbricati con processi industriali. Questi sono diffusi nel territorio integrati con le attività agricole e le abitazioni; la loro localizzazione è pianificata in modo da ridurre le necessità di trasporto delle materie prime e dei prodotti a grandi distanze e da ridurre il pendolarismo dei lavoratori fra fabbriche e miniere e abitazioni……

Macchine e merci sono prodotte con criteri di standardizzazione che assicurano una lunga durata e limitata manutenzione. I processi industriali richiedono minerali, metalli, materie estratte dalla biomassa, prodotti chimici, e inevitabilmente sono fonti di rifiuti e scorie.

L’abolizione degli eserciti ha portato ad un graduale declino e poi estinzione delle fabbriche di armi ed esplosivi.

Mentre nella società capitalistica l’unico criterio che stava alla base della produzione industriale era la massimizzazione del profitto degli imprenditori, e tale obiettivo era raggiunto spingendo i cittadini ad acquistare sempre nuove merci progettate per una breve durata, tale da assicurare la sostituzione con nuovi modelli, nella società comunitaria la progettazione dei prodotti industriali è basata su una elevata standardizzazione e su una lunga durata di ciascun oggetto…….

Nella società comunitaria odierna la mobilità di persone e merci è assicurata in gran parte da trasporti ferroviari elettrici, con una ristrutturazione delle linee ferroviarie dando priorità alla mobilità richiesta dalle persone che vanno al lavoro e alle scuole.

Oggi è praticamente eliminato il possesso privato di autoveicoli e il trasporto di persone è assicurato dalle comunità sia mediante efficaci mezzi di trasporto collettivo elettrici, sia mediante prestito di autoveicoli di proprietà collettiva per il tempo necessario alla mobilità richiesta……..

Siamo alle soglie del XXII secolo; ci lasciamo alle spalle un secolo di grandi rivoluzionarie transizioni, un mondo a lungo violento, dominato dal potere economico e finanziario, sostenuto da eserciti sempre più potenti e armi sempre più devastanti. L’umanità è stata più volte, nel secolo passato, alle soglie di conflitti fra paesi e popoli che avrebbero potuto spazzare via la vita umana e vasti territori della biosfera, vittima della paura e del sospetto, è stata esposta ad eventi meteorologici che si sono manifestati con tempeste, alluvioni, siccità.

Fino a quando le “grandi paure” hanno spinto a riconoscere che alla radice dei guasti e delle disuguaglianze stava dell’ideologia capitalistica del “di più”, dell’avidità di alcune classi e popoli nei confronti dei beni della natura da accumulare sottraendoli ad altre persone e popoli.

Con fatica abbiamo così realizzato un mondo in cui le unità comunitarie sono state costruite sulla base dell’affinità fra popoli, in cui città diffuse nel territorio sono integrate con attività agricole, in cui l’agricoltura è stata di nuovo riconosciuta come la fonte primaria di lavoro, di cibo e di materie prime, un mondo di popoli solidali e indipendenti, in cui la circolazione di beni e di persone non è più dominata dal denaro, ma dal dritto di ciascuna persona ad una vita dignitosa e decente.

Questo è il sogno è il lascito di Giorgio.

Giorgio, grazie di essere stato con noi; questo augurio che ci fai, a noi che restiamo piace; non ti dimenticheremo; che la terra ti sia lieve!

Bibiliografia essenziale.

http://www.fondazionemicheletti.it/nebbia/

Il Ferro nello spazio

In evidenza

Diego Tesauro

Il ferro, l’elemento numero 26 della tavola periodica, è oggetto di studio per tutte le discipline dello scibile sia umanistiche che scientifiche.

Gioca infatti un ruolo centrale nella storia dell’evoluzione della società umana tanto da caratterizzare un’età millenaria (https://ilblogdellasci.wordpress.com/brevissime/il-ferro-ha-5000-anni/) della preistoria; è perno dell’economia, essendo la metallurgia, ancora oggi nell’era dei nuovi materiali, un importante settore strategico per l’industria manifatturiera.

La sua presenza ed i composti che forma con gli altri elementi della tavola periodica a maggior ragione coinvolgono tutte le discipline scientifiche dalla geologia, alla biologia, all’astronomia.

Questa centralità è sicuramente dovuta, oltre alle sue peculiari proprietà chimico-fisiche, all’abbondanza sulla Terra, costituisce infatti il 16% della massa del nostro pianeta (la maggior parte concentrata nel nucleo), e il 5% della crosta terrestre. Ma la presenza di questo elemento così elevata sulla Terra trova riscontro anche in una notevole abbondanza nello spazio essendo il settimo fra tutti gli elementi della tavola periodica. Come si spiega questa elevata quantità in un universo dove invece, abbondano i nuclei leggeri come l’idrogeno e l’elio?

Innanzitutto occorre ricordare che nei processi di fusione nucleare nei nuclei delle stelle con emissione di energia i nuclei degli atomi più leggeri fondono per generare elementi più pesanti. Le stelle di massa come il Sole o poco maggiore terminano la loro evoluzione generando elementi come il carbonio e l’ossigeno, mentre le stelle di grande massa (dalle 8 masse solari in su) terminano i loro processi di nucleosintesi proprio con il ferro, in particolare con l’isotopo 56. I processi di nucleosintesi, quindi, hanno come elemento terminale il ferro. Il ferro viene successivamente disperso nello spazio dalle esplosioni di supernova con le quali implodono le stelle quando hanno termine i processi di produzione di energia per fusione nucleare, rendendone ubiquitaria la sua presenza.

Nelle stelle, compreso il Sole, viene ritrovato dall’ ”impronta” lasciata nelle righe di assorbimento degli spettri elettromagnetici delle fotosfere. Nel sistema solare è abbondante negli asteroidi chiamati sideriti, oltre che nei pianeti rocciosi come appunto la Terra, Marte e Venere, dove la presenza è stata confermata con la spettroscopia Mössbauer. Più complessa è la possibilità di rilevare il ferro nello spazio interstellare (ISM). Rispetto a quanto previsto dai modelli, la quantità di ferro gassoso è particolarmente bassa. Evidentemente il ferro non si trova allo stato gassoso, ma in clusters o in composti di tipo molecolare. Clusters metallici di Fe di tutte le dimensioni <1 nm e nanoparticelle di dimensioni> 1 nm sono presenti nella polvere interstellare, ma sono stati rilevati in misura inferiore rispetto alle quantità di ferro previste dai modelli. I clusters svolgono una funzione importantissima nello spazio interstellare. Essi infatti tendono a legare atomi e strutture molecolari ricche di elettroni. Questa proprietà potrebbe giocare un ruolo importante nella sintesi di molecole organiche complesse a cominciare dagli idrocarburi policiclici aromatici (IPA) di cui ci siamo occupati In precedente intervento (https://ilblogdellasci.wordpress.com/2018/01/22/gli-idrocarburi-policiclici-aromatici-ipa-nello-spazio-qual-e-la-loro-origine/ ). In laboratorio, i clusters di Ferro sono noti per catalizzare la formazione di idrocarburi aromatici da acetilene (C2H2) a basse pressioni [1], suggerendo che potrebbero fare lo stesso nell’ISM reagendo con l’acetilene e formando catene di carbonio più lunghe. Le catene lunghe di carbonio, in particolare i poliini, (CnH2) per n >10 sono termodinamicamente instabili, e quelli contenenti più di nove carbonio non sono stati osservati nelle regioni di gas circumstellare o interstellare. Come possono allora stabilizzarsi per dar luogo a molecole organiche complesse?

Recentemente le ipotesi avanzate per una loro maggiore stabilità assegnano ai clusters di ferro questa capacità formando dei pseudocarbini Ferro la cui struttura è riportato nella figura [2].

Potrebbero quindi costituire quel anello mancante che possa giustificare il passaggio da catene di atomi di carbonio a molecole organiche complesse che sono state ritrovate nel mezzo interstellare come gli IPA ed il fullerene. Le ipotesi andrebbero suffragate da osservazioni. Un modello teorico, messo punto ultimamente, ha permesso di dimostrare che spettri infrarossi di molecole di poliini legate ai cluster di ferro non risultano modificati sensibilmente, ma cambiati solo nell’intesità. Pertanto il ferro potrebbe nascondersi nei gas circumstellari delle stelle AGB (https://it.wikipedia.org/wiki/Ramo_asintotico_delle_giganti); infatti un singolo atomo di ferro aggiunto a catene contenenti nove atomi di carbonio esaurirebbe l’abbondanza di Ferro in fase gas del 95%.. L’esaurimento del ferro sarebbe maggiore qualora le catene di carbonio fossero più corte o contenessero altri atomi di ferro. Pertanto il ferro sarebbe presente in modo elusivo e giocherebbe un ruolo fondamentale anche nello spazio interstellare per la chimica organica. In questo modo si affiancherebbe a quello già ipotizzato nella chimica pre-biotica, ad esempio nella formazione di molecole organiche come l’acetato e il piruvato a partire dal biossido di carbonio [3] o nel folding e nella catalisi della molecola di RNA nelle fasi primordiali della vita sulla Terra [4].

La Catena di carbonio e idrogeno collegata ad un cluster di Fe13 (gli atomi di ferro sono rappresentati in colore bruno-rossastro, il carbonio in grigio, l’idrogeno in grigio chiaro).

[1] P., Schnabel K. G, Weil, M.P. Irion. Proof of the Catalytic Activity of a Naked Metal Cluster in the Gas Phase Angewandte Chemie International Edition in English 1992, 31, 636-638. https://doi.org/10.1002/anie.199206361

[2] P. Tarakeshwar , P. R. Buseck, F. X. Timmes. On the Structure, Magnetic Properties, and Infrared Spectra of Iron Pseudocarbynes in the Interstellar Medium The Astrophysical Journal 2019, 879(2) (8pp) https://doi.org/10.3847/1538-4357/ab22b7

[3] S.J. Varma, K.B. Muchowska, P. Chatelain, J. Moran Native iron reduces CO2 to intermediates and end-products of the acetyl CoA pathway. Nature Ecology & Evolution 2018, 2, 1019–1024. https://doi.org/10.1038/s41559-018-0542-2

[4] S.S. Athavale, A.S. Petrov, C. Hsiao, D. Watkins, C.D. Prickett, J.J. Gossett, L. Lie, J.C. Bowman, E. O’Neill, C.R. Bernier, N.V. Hud, R.M. Wartell, S.C. Harvey, L.D. Williams. RNA Folding and Catalysis Mediated by Iron (II) PLOS 2012, 7(5) , e38024.https://doi.org/10.1371/journal.pone.0038024

Dalle forze di van der Waals all’adesione.2. Perchè il ghiaccio è scivoloso?

In evidenza

Claudio Della Volpe

Nella prima parte di questo post abbiamo affrontato il tema di esprimere le forze di van der Waals fra molecole di gas reali nel contesto quantistico e soprattutto tenendo conto della velocità finita con cui i campi si propagano; questo ci ha fatto concludere che le forze di van der Waals in questo contesto sono definibili come forze di Casimir-Polder e il loro comportamento ha a che fare con la natura più intima della materia e dello spazio-tempo (l’energia di punto zero).

In questa seconda parte introdurremo un secondo punto di vista quello macroscopico; ossia invece di ragionare a partire dall’interazione fra due molecole o atomi ragioneremo sull’interazione fra corpi macroscopici, cosa che ha enorme importanza nei casi concreti.

Già Casimir aveva introdotto questo punto di vista col suo effetto, noi ripartiremo dalle forze non ritardate, ossia nella versione vdW. E cercheremo conferme macroscopiche di questi effetti e di queste forze.

Introduciamo qui un’idea molto produttiva che è quella della cosiddetta pressione interna.

La equazione di van der Waals è come detto la seguente:

il termine additivo sulla pressione, +a/V2 che la riconduce ad un comportamento ideale, quanto vale in un caso comune?

Ricordate che la pressione interna è la quantità da aggiungere al valore sperimentale, che si oppone a quella “tradizionale”, che ne riduce il valore “ideale” dunque è una pressione in effetti negativa.

Usando i valori tabulati che sono espressi in kPa L2 e considerando di avere 1 mole di vapor d’acqua a c.n. con un volume dunque di 22.4 litri circa, il risultato sarà dell’ordine di 1000 Pa (per la precisione 1102Pa), dunque l’1% della pressione totale (1atm = 101.325Pa).

Stimiamo la stessa quantità nell’acqua liquida o nel ghiaccio, ossia in fase condensata.

Qui potremmo usare una delle più belle equazioni della termodinamica classica.

Partendo dal primo principio:

dU=TdS-pdV

deriviamo contro il V a T costante

(dU/dV)T=T(dS/dV)T-p

ed infine ricordando le famose relazioni di Maxwell (le relazioni fra derivate seconde) sostituiamo la derivata a destra ottenendo

(dU/dV)T =pressione interna=T(dp/dT)V-p

Questa quantità si trova tabulata in letteratura (J. Chem. Phys. 13, 493 (1945); doi: 10.1063/1.1723984 ) ed ha un valore che si aggira per la maggior parte dei liquidi attorno a 0.2-0.7 GPa, circa 1 milione di volte più alta che nei gas.

E questa è già una bella osservazione che è espressa nel grafico qui sotto estratto da un classico della teoria cinetica

lNTRODUCTlON TO THERMODYNAMicS AND KlNETlC THEORY O f MATTER: Second Edition A. I. Burshstein Copyright@ 2005 WILEY-VCH

A sinistra il confronto fra pressione mozionale o traslazionale ed interna in un gas e a destra in un solido o liquido. La differenza fra la pressione traslazionale o mozionale e quella interna è uguale alla pressione sperimentale. In un gas la pressione traslazionale è poco più grande di quella interna, ed entrambe sono piccole; in una fase condensata invece, a destra entrambe sono grandi e quella traslazionale è ancora di poco più grande di quella interna. I valori finali di p sperimentale sono uguali ma sono il risultato di due differenze molto “diverse” tra loro, due numeri piccoli nei gas e due numeri grandi in fase condensata.

Questa grandezza, la pressione interna, correla bene, linearmente con altre quantità; per esempio se mettiamo in grafico la pressione interna e la tensione superficiale dei liquidi troviamo un ottimo accordo:

La pressione interna “strizza” il liquido o il solido comprimendone la superficie, che dall’altro lato non ha molecole che bilancino la pressione interna e ne ispessisce la superficie esterna, costruendo una sorta di membrana, che dà luogo all’effetto di tensione superficiale. Questa membrana era stata immaginata già da Thomas Young nel 1804.

E’ la membrana che appare visibile quando un insetto come l’idrometra (Hydrometra stagnorum) “schettina “ sull’acqua.

Nel grafico di pressione interna e tensione superfciale, come si vede, l’acqua costituisce un’eccezione, un outlier, è fuori linea, poi vedremo perchè.

Prima però ragioniamo sulle conseguenze degli effetti di questa pressione interna. Se consideriamo il diagramma di fase dell’acqua, vediamo che a questo valore di pressione (0.17GPa) e alla temperatura attorno allo zero, fino a quasi -38°C, l’acqua è liquida (la protuberanza a becco verde fra i ghiacci II, III, V e VI).

Questo fa capire una conseguenza importante; la pressione interna esercitata dal bulk dell’acqua nei confronti della propria superficie, la altera profondamente. Il ghiaccio (che ha una densità minore dell’acqua liquida) non resiste a questa pressione così elevata e fonde assumendo una distribuzione molecolare a maggiore densità, come mostrato nel grafico seguente, ottenuto per via numerica e confermato da varie misure sperimentali.

Quindi la superficie del ghiaccio o della neve fra 0 e -38°C possiede un sottile strato di acqua liquida; questo strato ha uno spessore variabile, decrescente con la temperatura; questo strato, che esiste si badi bene senza effetto di pressione esterna, è quello che permette di sciare, pattinare, schettinare o fare curling. Quando esso scompare, sotto -38°C il ghiaccio aumenta bruscamente il suo attrito e non si riesce più a sciare.

La comune interpretazione che sciare o pattinare si può grazie all’effetto del peso del pattinatore sui pattini funzionerebbe solo a 1°C sotto zero, ma non più giù, perchè nessun pattinatore o sciatore pesa abbastanza da esercitare una pressione sufficiente, le forze di attrazione intermolecolari si.

Prendete un pattinatore da 80 kg e mettetelo su un paio di pattini con un coltello da 5cm2 (25cm per 2mm di spessore), la pressione sarebbe di 8000N/0.001m2=8MPa solamente.

Per verificare se bastano usiamo la equazione di Clausius Clapeyron che ci da l’aumento di temperatura di fusione per un certo aumento di pressione.

la variazione fra il volume del ghiaccio e dell’acqua per un kg è 0.0905 litri (d=0.917) il calore latente di fusione è 3.33×105 J/kg.

273x-0.0905×10-3 x 8000000 /3.33×105 = -0.59°C. Quindi fino a -0.59°C bastano e poi?

E a t più basse? No non si pattina o si scia per questo effetto, come si crede comunemente.

http://physicspages.com/pdf/Schroeder/Schroeder%20Problems%2005.32.pdf

In questo bell’articolo (Why ice is slippery,2005 Physics today, p.50) una serie di approfondimenti (https://physicstoday.scitation.org/doi/full/10.1063/1.2169444 )

Il fatto che la superficie del ghiaccio possedesse un film di acqua era stato notato da Faraday (M. Faraday, Experimental Researches in Chemistry and Physics, Taylor and Francis, London (1859), p. 372. 
) con un esperimento elegantissimo che faceva attaccare due sfere di ghiaccio al semplice contatto (regelation)

Questo fenomeno costituì oggetto di discussione fra Faraday, J.J. Thomson, quello del plum-pudding model dell’atomo e che non ci credeva e perfino Gibbs, che ci credeva. Ed è stato poi confermato varie volte, per esempio in questo bel lavoro del 1954 di Nakaja e Matsumoto che riproducono l’esperimento di Faraday.

O in quest’altro di Hosler o in molte analisi fatte con i raggi X sulla lunghezza di legame nelle molecole di superficie.

Hosler, R. E. Hallgren, Discuss. Faraday Soc. 30, 200 (1961); C. L. Hosler, D. C. Jensen, L. Goldshlak, J. Meteorol. 14, 415 (1957).

Questo effetto che si potrebbe definire “fusione superficiale”, surface melting, è presente anche in altre sostanze: J. W. M. Frenken, J. F. van der Veen, Phys. Rev. Lett. 54, 134

(1985) e produce in esse una superficie intrinsecamente scivolosa.

Finisco il post notando che la formula usata prima per calcolare la pressione interna dà comunque un risultato che fa pensare, in quanto l’acqua, nella quale la tensione superficiale è più forte, ma nella quale la correlazione con la pressione interna viene meno, in questo si assomiglia ad altri liquidi con legami idrogeno e ci dà l’indicazione che qualcosa non torna.

Questa osservazione l’aveva fatta alcuni anni fa il compianto H.S. Frank (famoso per la bibbia sull’acqua, Water in 7 voll) (J. Chem. Phys. 13, 493 (1945); doi: 10.1063/1.1723984 ); l’acqua ed in genere le molecole lontane da una forma “ideale” semplice, sferica sono situazioni in cui una parte dell’energia libera del sistema è catturata da gradi di libertà “non manifesti”. Se usate questa stima della pressione interna l’acqua sembra peggio del pentano per esempio, il che è strano davvero. Molecole come gli idrocarburi senza forti interazioni specifiche sembrano avere la stessa pressione interna dell’acqua e dunque le stesse forze di interazione. Fatto che fa sorgere dubbi.

Per questo motivo la grandezza in questione, la pressione interna di un liquido si potrebbe stimare altrimenti, usando un’altra quantità: la energia di coesione o densità di energia di coesione (ced), ossia l’entalpia di vaporizzazione (oppure la somma di entalpia di vaporizzazione e fusione)per unità di volume. Il confronto fra i due tipi di dato è fatto per esempio da Y. Marcus (Internal Pressure of Liquids and Solutions, Yizhak Marcus, 2013 Chem. Rev.)

Una energia per unità di volume è equivalente dimensionalmente ad una forza per unità di superficie e dunque ad una pressione!!

U/V=Fxl /(lxS) dunque dividendo per l entrambi, numeratore e denominatore si ha una pressione! Per i liquidi “normali” diciamo senza legami idrogeno, le due quantità sono molto simili, ma in quelli con legami idrogeno, no; i legami idrogeno non sono forze di van der Waals e hanno effetti diversi. Ricordatelo, ci servirà per i prossimi post.

Per l’acqua questo valore è di circa 2.3 GPa, allo stato liquido (mentre la pressione interna calcolata nell’altro modo è di soli 0.17GPa); di poco superiore sarebbe quella del ghiaccio, appena sopra i 2.5GPa. Questo è dunque l’ordine di grandezza della pressione che si esercita anche all’interfaccia e che giustifica un comportamento dell’acqua molto particolare.

A questo punto nel diagramma di fase l’acqua si sposterebbe verso altre forme di ghiaccio piuttosto che verso uno stato disordinato più vicino al liquido.

A questo stadio della nostra riflessione la questione rimane irrisolta, ma si può pensare che l’effetto di strizzatura superficiale, distruggendo la struttura regolare impedisca la formazione di legami idrogeno e riconduca le interazioni molecolari nel più semplice stato di interazioni di vdW.

Nel prossimo post analizzeremo il caso delle interazioni fra oggetti macroscopici in modo più formale, andando a scoprire chi erano Hamaker e Lifshitz, due giganti della chimica e della fisica.

(continua).