Informazioni su devoldev

chemist, university researcher, marxian, peakoiler,climate worried, bridge player, Mozart/Vivaldi loving, pedal biker

“Tutto è chimica!”, breve intervista a Cristiana Capotondi.

In evidenza

La redazione del blog.

Abbiamo intervistato via mail Cristiana Capotondi, la brava e giovane interprete della fiction televisiva “Di padre in figlia”, cui avevamo già accennato in un breve post; Cristiana ha acconsentito a rispondere brevemente a qualche domanda in esclusiva per noi. La ringraziamo insieme alla signora Cristiana Mainardi che ha fatto da tramite.

 D. Signora Capotondi si è resa conto di questi aspetti almeno in parte contraddittori con alcuni “memi” attuali:
la chimica positiva, la scienza di “tutto è chimica” mentre oggi l’aggettivo chimico corrisponde spesso a sporco, inquinante, o comunque non è positivo, è contrapposto a naturale?  Lei personalmente cosa pensa di questo contrasto? Se ci fosse un seguito di questa fiction in tempi più vicini a noi lei crede che il personaggio che lei ha interpretato avrebbe dei ripensamenti? Avrebbe ancora il seggio di Galileo come punto focale della sua vita?

R. Credo che si debba informare la gente su ciò che significhi chimica. Ricerca, nuove possibilità e scienza senza la quale moriremo anche solo per una semplice influenza.

D.: Pensa lei che oggi la laurea e in particolare in una materia scientifica sia ancora uno strumento di emancipazione femminile? O che l’emancipazione passi altrove? un padre proibirebbe ancora alla figlia di studiare la chimica? Lei che rapporto ha avuto con la Chimica come materia di studio? Ha mai pensato di svolgere un lavoro di questo tipo?

R.:Le materie scientifiche sono la parte esposta di un lavoro umanistico ancora più profondo, ovvero rispondere alle urgenze della popolazione che sono sempre in divenire. Quindi, si mi piacerebbe lavorare in questa direzione e credo che lo studio delle materie scientifiche aperto alle donne sia una conquista.

D.: parlare bene di chimica in una fiction e non parlarne mai o quasi nelle trasmissioni più culturali o di servizio come report poniamo: lei crede che questa sia una scelta condivisibile del mezzo pubblico? Tutto sommato lei ha detto quella frase Tutto è chimica con splendido accento veneto (anche se è romana de roma) davanti a vari milioni di persone: quella scena l’avete fatta una volta o più volte? le è venuto naturale o no? le è sembrato “forzato”? la figura della chimica e non poniamo della fisica o della matematica, da dove è venuta fuori? ci può raccontare?
Cosa interpreterà prossimamente? Ancora figure da scienziata/ricercatrice e da donna in carriera o da donna tout court?

R.:Tutto è chimica, così funziona la vita. Con azioni e reazioni che ci cambiano a livello molecolare. È utile ragionare su queste tematiche anche per raccontare come l’uomo psichicamente incida sulla sua fisicità. È utile per rilanciare laicamente il concetto di uomo come sinolo storico.
Qualunque palco è adatto, che sia informazione o fiction.
L’idea della chimica nasce dalla sua utilità nel mondo della distillazione.
Lavorerò al nuovo film di Marco Tullio Giordana dal titolo Nome di donne.

La pubblicità di ENI.2. Quanto è verde la chimica verde?

In evidenza

Claudio Della Volpe

(la prima parte di questo post è pubblicata qui)

Da quando Anastas e Warner pubblicarono nel 1998 il loro famoso libro Green Chemistry Theory and Practice* è passata parecchia acqua sotto i ponti e la definizione e l’importanza della “chimica verde” si sono estese; i 12 principi originali sono i seguenti 

Ma di fatto la complessità del problema ha reso necessario un approccio polifattoriale per definire e verificare quanto è verde la chimica che è espresso nello schema qui sotto.

Nella storia recente il verde è stato un colore abusato; si pensi alla cosiddetta rivoluzione verde, un approccio ai temi della produzione agricola che, attraverso l’impiego di varietà vegetali geneticamente selezionate, fertilizzanti, fitofarmaci, acqua e altri investimenti di capitale in forma di mezzi tecnici, ha consentito un incremento significativo delle produzioni agricole in gran parte del mondo tra il 1940 e il 1970 (il nome di riferimento è Norman Borlaug, premio Nobel per la pace nel 1970). Tuttavia tale incremento ha costituito la premessa di una serie di grandi problemi; da una parte non ha risolto il problema della fame che attanaglia ancora alcune parti del pianeta, dall’altra la sua applicazione ha sconvolto i cicli del carbonio, dell’azoto e del fosforo, attraverso l’incremento della produzione di metano, l’introduzione di nitrati sintetizzati a partire da ammoniaca e l’incremento della estrazione di fosfati; dunque la soluzione di una parte del problema della fame ha prodotto altre rilevanti tensioni fra noi e il nostro ambiente.

Sperando che questo non sia il caso della chimica verde approfondiamo un pò come la vede ENI.

La bioraffineria produce biocarburanti da oli vegetali e, a breve, da materie prime non convenzionali quali oli di frittura, grassi animali e scarti della produzione alimentare. Quello realizzato nelle nostre bioraffinerie è un biocarburante di altissima qualità la cui produzione nel 2020 raggiungerà il milione di tonnellate.”

Al momento ENI si dedica alla produzione di “biocarburanti” a partire da olio di palma recentemente demonizzato per usi alimentari, ma attenzione:

Nella Bioraffineria di Venezia utilizziamo olio di palma certificato, cioè frutto di coltivazioni esistenti da molti anni, quindi sicuramente non causa di deforestazione – ha spiegato Giacomo Rispoli, “l’inventore” di questa tecnologia, ora Supply manager di Eni – e inoltre verifichiamo con audit locali, in Malesia e Indonesia. Ma la nostra tecnologia Ecofining® è flessibile, quindi potrà trasformare in green diesel l’olio ricavato dalle microalghe che già stiamo testando a Gela, oppure gli olii waste, oppure ancora i grassi animali e gli olii microbici da biomasse»

Il consumo italiano di carburanti ha piccato nei primi anni 2000 sui 37-38 Mton ed attualmente viaggia su circa 30; dunque la prospettiva ENI è di incrementare la quota “bio” di questi carburanti, in particolare diesel, adesso usando olio di palma e in futuro arrivare ad un qualche percento del totale (1/30) usando microalghe, scarti vegetali e simili.

Ringrazio Terenzio Longobardi per questo grafico

Ma quanto sono verdi queste strategie?

Anche con la migliore tecnica agricola non si superano 1-1.5 toe/ettaro come energia netta. Dunque stiamo parlando di 1-2 milioni di ettari assoggettati per arrivare ai limitati fini di ENI, ossia fra i 10 e i 20.000 chilometri quadri; anche questo obiettivo tutto sommato di nicchia richiederebbe un decimo di tutta la superficie italiana usata per agricoltura e se vi fate un conto immediato anche se tutta la superficie agricola fosse convertita ad uso carburante non basterebbe ai nostri bisogni e nemmeno tutta la superficie dello stato basterebbe.

Insomma una tecnica del genere ci obbliga a rimanere importatori di energia e farebbe concorrenza comunque in certo grado alla produzione agricola.

Ci sono state altre esperienze perchè questa strategia (produrre la quota “bio” dei carburanti) è stata scelta da altre aziende italiane ma con scarso successo (una fra tutte Mossi& Ghisolfi, Crescentino, biocarburanti dalla canna selvatica Arundo Donax, un argomento che ho analizzato in dettaglio su C&I e che si rivela un investimento fallimentare). Crescentino è in profonda crisi e le prospettive occupazionali sono pessime. Si veda un mio articolo a riguardo https://www.soc.chim.it/system/files/private/chimind/pdf/2016_5_62_ca.pdf

Non è che non si possa fare chimicamente; si può fare, ma il ritorno energetico è ridicolmente basso e le difficoltà pratiche notevoli. Anche i biocarburanti di seconda generazione mostrano dei limiti; in due parole a parte la bassa resa superficiale e la sia pur ridotta concorrenza con l’alimentare rispetto ai biocarburanti di prima generazione, il problema è che se sottraete alla terra i residui vegetali delle piante dovete poi restituirglieli sotto forma di concimi sintetici e dunque il bilancio energetico complessivo di questa strategia complessiva in realtà non può essere granchè positivo.

Ma l’idea che sta dietro alla bioraffineria è molto più ampia e per certi aspetti sconvolgente; leggete con me un recente libro dedicato al tema delle bioraffinerie:

The present use of biomass is mainly limited to food and feed and a much smaller but still increasing part is applied for production of energy and fuels. The amount of biomass that is used for human consumption (food and non-food) represents only 13% of the annual global biomass production by photosynthesis that accounts for 155,000 million ton/year (see Section 1.2.2). This indicates a biomass potential to contribute significantly also to industrial sectors, including energy and chemicals (Marquardt et al., 2012).

(EFFICIENCY OF BIOMASS ENERGY An Exergy Approach to Biofuels, Power, and Biorefineries Krzysztof J. Ptasinski, Wiley 2016 cap. 17)

Dunque l’idea è: dato che sfruttiamo SOLO(sic!) un settimo circa del totale del flusso fotosintetico la bioraffineria sarebbe il modo di assoggettare una parte crescente o perfino tutta la biosfera alle necessità umane; la cosa ha un che di apocalittico e anche di spaventoso. Se tutta la biomassa venisse usata per scopi umani cosa ne sarebbe della biodiversità? E ancor più sarebbe questa prospettiva sostenibile? La biosfera è una rete integrata di relazioni non una macchina fatta di pezzi sostituibili; se assoggettiamo quelle relazioni solo ai nostri bisogni allora distruggeremo la macchina. Si potrebbe crescere nell’intercettazione del flusso fotosintetico senza alterare in modo ancora maggiore il funzionamento della biosfera( biodiversità, grandi cicli degli elementi, etc)? La mia risposta è: molto difficile se non impossibile.

Facciamo qualche riflessione su grande scala.

La società umana usa un quantitativo di energia primaria, ossia relativo alle sorgenti energetiche presenti in natura e quindi non derivanti dalla trasformazione di nessuna altra forma di energia, dell’ordine di 12-14 GTOE/anno, che al momento viene da energia fossile in percentuale dominante. La dimensione di questo consumo è tale che pone due limiti.

Il primo è che sebbene il flusso annuale di energia attraverso la biosfera sia di gran lunga maggiore di quello effettivamente usabile senza alterare in modo significativo i cicli naturali e la biosfera medesima i due diventano nondimeno “comparabili”; considerate per esempio che se è vero che il rapporto fra flusso di energia luminosa dal Sole e consumo totale primario è dell’ordine di 10.000:1 su tutto il globo, riducendosi (per motivi pratici e politici) all’area interna di un paese fortemente industrializzato come il nostro il rapporto scende a 200:1 e in paesi ancora più “concentrati” del nostro e dalle caratteristiche territoriali diverse, come l’Olanda può arrivare a solo 100:1; per cui l’incremento assoluto della quantità di energia comincia diventare significativo rispetto all’uso della biosfera. Siamo dunque non lontani da limiti insuperabili.

In secondo luogo se è concepibile trarlo da sorgenti interamente rinnovabili (solare, eolico, idro, maree, biomasse) le biomasse non potranno mai giocarvi un ruolo predominante; basti infatti pensare che la superficie atttualmente usata per scopi agricoli è stimabile in circa 40 milioni di kmq; dato che la produttività massima di specie usabili anche con le metodiche di seconda generazione equivale come detto al massimo a circa 1-1.5TOE/ettaro, se pure volessimo usare TUTTA la superficie agricola per scopi energetici e seppure questo, con sviluppi tecnologici oggi non concepibili, NON alterasse la resa agricola corrispondente, quindi se avessimo una ipotetica agricoltura OGM che producesse contemporaneamente cibo ed energia non supereremmo 4-5 GTOE anno, meno della metà delle nostre esigenze attuali.

Ovviamente si può immaginare una serie di scenari diversi usando le foreste attuali, il mare etc, (e questa è la prospettiva della “bioraffineria”) ma tutti questi scenari infrangono il limite della non ulteriore interferenza con la biosfera, la cui decadenza (ho detto giusto decadenza) misurata attraverso la riduzione della biodiversità è già manifesta e non tenendo conto che l’incremento prevedibile della numerosità umana nei prossimi 100 anni potrebbe essere dell’ordine di almeno 2-3 miliardi di altri individui con le corrispondenti richieste di cibo ed energia. Si tenga presente per esempio che attualmente la biomassa terrestre di vertebrati umani o asserviti all’uomo è il 98% del totale della biomassa di analogo livello (umani+asserviti+ selvatici)!!

In parole povere la biomassa non potrà giocare nemmeno nello scenario più favorevole se non un ruolo secondario nella nostra produzione energetica a meno di non rischiare un ulteriore impoverimento del sistema e perfino un suo danneggiamento irreversibile. Probabilmente nessuna sorgente primaria sarà assoluta o raggiungerà mai un ruolo dominante così esclusivo come gioca attualmente il fossile, ma se si può pensare ad una sorgente principe il pensiero non può che correre al solare nelle sue varie forme, accompagnato dall’eolico, dall’idrico e della maree/onde. Il nucleare attuale non è rinnovabile per nulla, avendo già superato il suo picco dell’uranio (non faccio menzione qui dei problemi di riciclo che pure non sono stati al momento risolti).

Diverso è il discorso se pensiamo ad usi NON energetici; qui le esigenze sono quantitativamente molto più ridotte, di ordini di grandezza e quindi si può pensare ad un ruolo chiave dei materiali di origine “naturale” e non fossile con limiti che dipendono dalle singole risorse (un esempio banale sono le fibre tessili naturali come canapa e lana, che oggi sono abbandonate o perfino considerate rifiuti).

Ma se le cose stanno così, perchè il nostro paese persegue una politica della chimica verde legata a visioni tipo biocarburanti? Perchè non sottolinea le biomasse come sorgente di materiali prima che di energia? Perchè le nostre major chimiche invece di investire nella produzione di materiali per il solare dei vari tipi (silicio, film sottile, o perfino perovskite) puntano alle biomasse; per esemplificare perchè si cerca a tutti i costi di mantenere Crescentino (Mossi e Ghisolfi) o Venezia-Marghera (ENI) ma si abbandonano di fatto Catania o Merano(SGS e MEMC)? Perchè non si supportano quei coraggiosi tentativi di startup sui temi dell’accumulo (come questo l’unico produtore italiano di celle al litio ione)?

*Anastas, Paul T., and Warner, John C. (1998). Green Chemistry Theory and Practice. New York: Oxford University Press

 

Alcune considerazioni sulla Strategia Energetica Nazionale 2017

In evidenza

Alcune considerazioni del Gruppo di Scienziati di Bologna

energiaperlitalia.it (Coordinatore: Vincenzo Balzani)

sulla  Strategia Energetica Nazionale 2017

 

La bozza della Strategia Energetica Nazionale (SEN) presentata dal Governo il 10 maggio si propone tre obiettivi:

  1. Competitività (ridurre il gap di prezzo dell’energia rispetto ai prezzi UE);
  2. Ambiente (raggiungere obiettivi in linea con COP21);
  3. Sicurezza (flessibilità di approvvigionamento).

Esame della SEN

Dopo un’attenta lettura della bozza SEN, si possono fare le seguenti considerazioni.

Coordinamento. Considerata la stretta connessione fra la scelta delle fonti energetiche e le conseguenze che ne possono derivare su clima e ambiente, risulta difficile capire le motivazioni per cui il Ministero delle Sviluppo Economico prepari una Strategia Energetica Nazionale e, allo stesso tempo, il Ministero dell’Ambiente prepari una Strategia energia-clima. In altri paesi si procede solitamente alla preparazione di un unico programma che, oltre a rispettare gli accordi di Parigi e gli obiettivi UE, tiene conto delle caratteristiche e delle esigenze specifiche del paese.

Fonti rinnovabili. L’obiettivo della SEN è in linea con quelli europei (27% di rinnovabili nei consumi finali al 2030; ad oggi la stima è del 17,5%). C’è però chi pensa che sia necessario giungere al 35% di energia rinnovabile per rispettare lʼaccordo di Parigi. LʼItalia, in ogni caso, deve e può fare di più. Alla fine del 2015 avevamo circa 19 mila MW di fotovoltaico installato e circa 9 mila MW di eolico. Il nostro paese ha conosciuto un forte sviluppo delle fonti rinnovabili fino al 2013, ma da più di tre anni è in stasi con la conseguente perdita di migliaia di posti di lavoro.

Più in dettaglio, non si può che essere d’accordo con l’obiettivo della SEN di promuovere l’autoconsumo per i possessori di piccoli impianti, soluzione finora fortemente scoraggiata dalla burocrazia e persino impedita da alcune norme. Parallelamente sarà però necessario facilitare la diffusione di metodi di accumulo. Positiva anche la decisione di promuovere la costruzione di grandi impianti fotovoltaici. A questo proposito, non si capisce perché Enel sia così attiva nel costruire grandi impianti di energie rinnovabili all’estero e del tutto assente, in questo campo, in Italia. Forse perché disturberebbe altri importanti operatori del settore energetico?

Efficienza energetica. La SEN riconosce che è necessaria una riqualificazione energetica su larga scala del nostro patrimonio edilizio, agendo su palazzi, agglomerati di edifici e interi quartieri con metodologie simili a quelle adottate con successo in altri paesi ed intervenendo, contemporaneamente, sulle criticità sismiche. Perché il programma abbia successo, è però necessario un piano adeguato di incentivi per anticipare le risorse necessarie.

Uscita dal carbone. Nella SEN è prevista tra il 2025 e il 2030. Nel caso in cui ciò si verificasse nel 2025, secondo la SEN si dovrebbero pagare circa 3 miliardi di euro di compensazione ai proprietari delle centrali non ancora ammortizzate. A questo proposito ci si chiede: 1) Possibile che impianti così vecchi non saranno ancora del tutto ammortizzati nel 2025? 2) E’ stato calcolato il risparmio dovuto ai benefici sanitari e climatici che deriverebbero dall’uscita anticipata, considerato che lʼAgenzia Europea per lʼAmbiente ha stimato in oltre 500 milioni di euro lʼanno gli impatti della sola centrale di Brindisi? 3) E’ stato calcolato il risparmio generato dalla mancata importazione del carbone?

In ogni caso, il problema delle compensazioni per impianti non adeguatamente sfruttati deve insegnarci che le grandi opere nel settore energetico vanno valutate in base all’effettivo bisogno che ci sarà in futuro (vide infra).

Investimenti per il gas. La SEN prevede di investire sul gas per ottenere elettricità in sostituzione del carbone, come risorsa di back up delle fonti rinnovabili e per diversificare le fonti di approvvigionamento. A questo proposito bisogna anzitutto notare che il consumo di gas, che era di circa 85 Gm3 all’anno nel periodo 2005-2008, è diminuito negli ultimi anni (71 Gm3 nel 2016) e certamente continuerà a diminuire. C’è quindi il rischio di costruire infrastrutture che rimarranno inutilizzate o sotto utilizzate, come è accaduto per i rigassificatori, con spreco di denaro pubblico o con la necessità di successive compensazioni per il mancato uso. Poiché in futuro per vari motivi si produrrà e si userà sempre più energia elettrica, sarebbe meglio investire in sistemi di accumulo dell’elettricità piuttosto che in centrali a gas di back up o in impianti di stoccaggio geologico del gas di importazione.

Trasporti. La SEN propone di estendere l’uso del gas come combustibile. Questo è anche quanto sostiene Eni nelle numerose pagine pubblicitarie sulla stampa e nei frequenti spot TV: il metano come ponte verso l’uso (remoto) delle fonti rinnovabili. Bisogna notare, però, che l’utilizzo del metano abbatte solo in parte l’inquinamento atmosferico e non porta alcun vantaggio per quanto riguarda il cambiamento climatico. E’ vero, infatti, che a parità di energia prodotta la quantità di CO2 generata dal gas naturale è inferiore di almeno il 20% di quella generata quando si usano derivati del petrolio, ma è anche vero che il metano è un gas serra 72 volte più potente di CO2 quando l’effetto è misurato su 20 anni e 25 volte più potente quando misurato su 100 anni. Poiché nella lunga filiera del metano si stima ci siano perdite di almeno il 3% rispetto alla quantità di gas usato, è chiaro che passando al metano non si combatte affatto il cambiamento climatico.

Sempre nel campo dei trasporti, la SEN fa molto affidamento sui biocombustibili. Nulla da obiettare sul biometano ottenuto da prodotti di scarto, ma la figura riportata a p. 17 della SEN prevede che dal 2021 al 2030 si avrà solo un piccolo aumento della penetrazione delle rinnovabili nei trasporti e questo sarà principalmente dovuto a biocombustibili. Ancora una volta, questo è quanto sostiene Eni nelle sue pagine pubblicitarie, in una delle quali è scritto a caratteri cubitali che “Il carburante si otterrà dalle bucce delle mele. In Italia” (Corriere della Sera, 13 maggio 2017)

Va sottolineato che la presa di posizione di SEN e Eni in favore dei biocombustibili è in netta contraddizione con la realtà dei fatti. Numerosi studi scientifici dimostrano che nella filiera che porta dalle biomasse alle auto alimentate da biocombusibili l’efficienza di conversione dei fotoni del sole in energia meccanica delle ruote di un’automobile (sun-to-wheels efficiency) è inferiore allo 0.1%, mentre per la filiera che dal fotovoltaico porta alle auto elettriche l’efficienza è 5,4%, cioè almeno cinquanta volte maggiore. In effetti, quello che gli esperti prevedono non è una sostituzione significativa dei combustibili fossili con biocombustibili, ma una rapida, dirompente diffusione delle auto elettriche. La cosa non meraviglia perché i motori elettrici non inquinano, non producono CO2, sono quattro volte più efficienti dei motori a combustione interna e sono molto più facili da riparare e da mantenere.

Mentre l’Unione Petrolifera stima che nel 2030 i veicoli elettrici saranno solo lo 0,5% del parco di autoveicoli, gli esperti sono concordi nel prevedere una vera e propria rivoluzione nel campo dei trasporti. Nel 2020 potremo scegliere fra 120 modelli diversi di auto elettriche, nel 2025 il 30% delle auto vendute saranno elettriche e nel 2030 il 60% dei veicoli circolanti saranno elettrici. Anche Cina e India, i due mercati su cui hanno a lungo puntato le compagnie petrolifere e i costruttori di vetture con motori a combustione interna, hanno recentemente deciso di sviluppare rapidamente la mobilità elettrica.

In Italia, quindi, non servono altre bioraffinerie alimentate da olio di palma proveniente dalla Malesia (in attesa di usare le bucce delle nostre mele), ma fabbriche di pannelli fotovoltaici, di batterie e di auto elettriche.

Il futuro

E’ ormai chiaro che il fotovoltaico sarà la fonte energetica in più rapida crescita nei prossimi anni. Secondo Irena, tra il 2015 e il 2025 il costo di installazione degli impianti fotovoltaici si ridurrà del 57%. Nel frattempo, l’efficienza dei moduli più comuni aumenta (18-20%) e la diminuzione di efficienza nel tempo è così piccola da permettere un utilizzo medio di 35 anni. Il fotovoltaico è una tecnologia dirompente che, con effetto sinergico, potenzia due altre tecnologie: batterie (anche per uso stanziale) e auto elettriche. Il fotovoltaico servirà anche a produrre combustibili solari, indispensabili per i trasporti aerei e marittimi: utilizzando energia fotovoltaica per compiere l’elettrolisi dell’acqua si ottiene, infatti, idrogeno che può essere utilizzato per produrre combustibili liquidi come metanolo e gasolio sintetico.

E’ necessaria la riconversione di molte industrie. Un proverbio cinese dice: “Quando soffia il vento del cambiamento alcuni costruiscono muri, altri pale eoliche”. Saipem e Enel l’hanno capito. E’ urgente che la riconversione di Eni verso le rinnovabili diventi reale, non solo di facciata. Quella che era la “nostra” grande industria automobilistica (FCA) non è interessata ai veicoli elettrici e si ostina a produrre automobili tradizionali che entro non molti anni saranno fuori mercato. Questa incapacità di capire in che direzione va il mercato automobilistico rischia di lasciarci fuori dallo sviluppo industriale di questo settore e lo consegna ancor più nelle mani di industrie straniere. Sia le industrie petrolifere che quelle automobilistiche dovrebbero tener conto che c’è una rapida evoluzione nella tecnologia e che non si possono vincere sfide andando contro corrente. Purtroppo la SEN non è in linea con le previsioni degli esperti e non si pone obiettivi chiari nel campo dei trasporti. Se veramente si vuole svecchiare il parco veicolare (p. 16 della bozza SEN) per ridurre l’inquinamento e combattere i cambiamenti climatici, bisogna investire nella realizzazione di una infrastruttura diffusa di ricarica elettrica e fornire incentivi per lʼacquisto di veicoli elettrici e non di veicoli a combustione interna, particolarmente dopo gli inganni che hanno perpetrato in questo campo le industrie automobilistiche.

Per quanto riguarda il gas, la SEN dovrebbe tener presente che c’è il forte rischio di costruire gasdotti e impianti di rigassificazione e stoccaggio in eccesso. Come già accennato, i consumi di gas sono in diminuzione e continueranno a diminuire sia per combattere i cambiamenti climatici che per l’inarrestabile sviluppo delle rinnovabili. Secondo le previsioni UE, nel 2030 si importeranno 328 miliardi di m3 di gas all’anno, la metà della capacità di importazione delle infrastrutture già oggi disponibili. Con la realizzazione di tutte le infrastrutture programmate l’Europa avrebbe una capacità di importazione addirittura tre volte maggiore di quella necessaria. Un discorso simile si può fare per quanto riguarda le bioraffinerie, data la rapida diffusione di auto elettriche.

La netta presa di posizione dei governi italiano, francese e tedesco contro la decisione del presidente Trump di ritirarsi dall’accordo di Parigi deve ora declinarsi in azioni e fatti concreti. La transizione energetica dai combustibili fossili alle energie rinnovabili è non solo necessaria, ma inevitabile. Nella letteratura scientifica internazionale ci sono molti studi sull’argomento. Ricordiamo solo quello di scienziati delle università di Stanford, Berkeley e Berlino, nel quale è dimostrato che la transizione è tecnicamente possibile ed economicamente conveniente. In tutti i 139 paesi presi in esame, entro il 2050 si possono sostituire totalmente i combustibili fossili con l’energia rinnovabile del sole, del vento e del’acqua. Per quanto riguarda specificamente l’Italia, lo studio prevede che la transizione energetica porterà da qui al 2050 un risparmio di circa 6.700 dollari per persona all’anno e un aumento complessivo di circa 770.000 posti di lavoro, considerando anche i circa 150.000 posti persi con l’abbandono dei combustibili fossili.

Conclusioni

Definire le linee di indirizzo per una valida Strategia Energetica Nazionale è un problema complesso, che deve essere affrontato congiuntamente da almeno cinque prospettive diverse: scientifica, economica, sociale, ambientale e culturale.

A nostro parere gli obiettivi principali delle Strategia Energetica Nazionale per un paese come l’Italia dovrebbero essere due, come già avemmo modo di segnalare al precedente governo:

  1. Ridurre il consumo di energia, obiettivo che deve essere perseguito mediante un aumento dell’efficienza energetica e, ancor più, educando alla cultura della parsimonia, principio di fondamentale importanza per vivere in un mondo che ha risorse limitate.
  2. Facilitare e accelerare la transizione dall’uso dei combustibili fossili a quello delle energie rinnovabili, anche nell’ottica di una più generale transizione dall’economia lineare all’economia circolare.

Perseguendo questi due obiettivi, si potrebbero raggiungere importanti risultati:

riduzione delle importazioni di combustibili fossili;

– maggiore indipendenza energetica;

– miglioramento nella bilancia dei pagamenti;

– riduzione (non espansione!) fino a totale cessazione dell’estrazione di combustibili fossili nel nostro suolo e nei nostri mari, evitando così la degradazione del paesaggio e il rischio di incidenti che potrebbero compromettere il turismo, che è un’enorme fonte di ricchezza certa per l’economia nazionale;

– superamento dei modesti obiettivi dichiarati dal nostro paese alla COP21, con un conseguente maggiore abbattimento non solo di gas serra, ma anche delle sostanze inquinanti e quindi dei costi sociali ed economici da esse provocati; ricordiamo che secondo l’Agenzia Europea per l’Ambiente in Italia avvengono più di 90 mila morti premature ogni anno (in termini di anni di vita persi, circa 16 anni ogni 1000 abitanti).

– creazione di nuovi posti di lavoro particolarmente nel settore manifatturiero.

E’ importantissimo che la riduzione dei consumi non sia basata solo su un aumento di efficienza perché in tal caso può verificarsi l’effetto rebound: i soldi risparmiati con l’aumento di efficienza vengono spesi altrove, con ulteriori consumi energetici. Prima che sull’efficienza, è necessario che l’azione del governo sia volta a diffondere una cultura della sufficienza per far sì che le persone diventino consapevoli dei vantaggi di vivere in un modo sobrio, riducendo volontariamente i consumi di energia e di ogni altra risorsa. Il governo potrebbe dare il buon esempio riducendo il limite di velocità sulle autostrade, incoraggiando i cittadini ad acquistare auto che consumino e inquinino meno, incentivando l’uso delle biciclette e dei mezzi pubblici, trasferendo per quanto è possibile, con la massima urgenza, il trasporto merci dalla strada alla rotaia o a collegamenti marittimi e, soprattutto, organizzando una campagna di informazione e formazione culturale, a partire dalle scuole, per mettere in luce i vantaggi dello sviluppo delle fonti rinnovabili, della riduzione dei consumi individuali e collettivi e più in generale della sobrietà. Se il denaro speso dall’Eni per la sua intensa e irritante campagna pubblicitaria fosse usato dal governo per una campagna culturale su questi temi, si potrebbero gettare le fondamenta per una società a 2000 W come quella scelta dagli svizzeri col referendum del 21 maggio 2017, che ha approvato la strategia energetica svizzera 2050. (NOTA: attualmente, un cittadino americano usa 12.000 watt di potenza e un cittadino europeo 6.000 watt. 2000 watt era la potenza pro capite complessiva usata in Europa negli anni ’60 ed è proprio questo l’obiettivo che la Svizzera si è posta di raggiungere nel 2050: 2000 watt di potenza corrispondono infatti ad una quantità di energia sufficiente per soddisfare tutte le necessità dei cittadini e per permettere una vita più che agiata).

Bisogna rendersi conto che il mondo deve cambiare, perché, come dice papa Francesco nell’enciclica Laudato si’, “l’idea di una crescita infinita o illimitata, che ha tanto entusiasmato gli economisti, i teorici della finanza e della tecnologia suppone la menzogna circa la disponibilità infinita dei beni del pianeta, che conduce a “spremerlo” fino al limite e oltre il limite. Si tratta del falso presupposto che esiste una quantità illimitata di energia e di mezzi utilizzabili, che la loro immediata rigenerazione è possibile e che gli effetti negativi delle manipolazioni della natura possono essere facilmente assorbiti».

Compito della SEN è gettare le basi per il passaggio dal consumismo e dall’usa e getta dell’economia lineare ad una economia circolare caratterizzata dalla sobrietà. L’Italia, un paese che per decenni ha vissuto al di sopra delle proprie risorse economiche, caricando pesanti debiti sulle spalle delle future generazioni, può e deve trovare nella transizione energetica l’occasione per un netto cambiamento di rotta che le permetterebbe anche di assumere un ruolo di guida all’interno della Unione Europea.

4 giugno 2017

Gruppo di scienziati di Bologna energiaperlitalia.it

Vincenzo Balzani (coordinatore), Dipartimento di Chimica “G. Ciamician”, Università; Nicola Armaroli, Istituto ISOF-CNR; Alberto Bellini, Dipartimento di Ingegneria dell’Energia Elettrica e dell’Informazione “Guglielmo Marconi”, Università; Giacomo Bergamini, Dipartimento di Chimica “G. Ciamician”, Università; Enrico Bonatti, ISMAR-CNR; Alessandra Bonoli, Dipartimento di Ingegneria Civile, Chimica, dell’Ambiente e dei Materiali, Università; Carlo Cacciamani, Servizio IdroMeteoClima, ARPAE; Romano Camassi, INGV; Sergio Castellari, Divisione servizi climatici, CMCC e INGV; Daniela Cavalcoli, Dipartimento di Fisica ed Astronomia, Università; Marco Cervino, ISAC-CNR; Maria Cristina Facchini, ISAC-CNR; Sandro Fuzzi, ISAC-CNR; Luigi Guerra, Dipartimento di Scienze dell’Educazione «Giovanni Maria Bertin», Università; Giulio Marchesini Reggiani, Dipartimento di Scienze Mediche e Chirurgiche, Università; Vittorio Marletto, Servizio IdroMeteoClima, ARPAE; Enrico Sangiorgi, Dipartimento di Ingegneria dell’Energia Elettrica e dell’Informazione “Guglielmo Marconi”, Università; Leonardo Setti, Dipartimento di Chimica Industriale, Università; Micol Todesco, INGV; Margherita Venturi, Dipartimento di Chimica “G. Ciamician”, Università; Stefano Zamagni, Scuola di Economia, Management e Statistica, Università; Gabriele Zanini, UTVALAMB-ENEA

 

La pubblicità di ENI. Il metano ci dà una mano. O no?

In evidenza

Claudio Della Volpe

Con un fatturato annuo di oltre 67 miliardi di euro nel 2016, sia pure in fortissima diminuzione rispetto al passato (i dipendenti si sono ridotti a meno di 30.000 dagli oltre 100.000 degli anni 90) ENI rimane la seconda o terza azienda italiana (dopo EXOR-FCA, ossia l’ex Fiat e dopo ENEL, nel 2016), pagando la riduzione dei costi del greggio e il deconsolidamento di Saipem e Versalis; se enrambe fossero rimaste nel perimetro ENI, la società oggi avrebbe un fatturato di oltre 80 miliardi. Ma nonostante questo, la fama di “stato-nello-stato” guadagnata fin dai tempi di Mattei non viene scalfita, ed ENI continua a svolgere un ruolo chiave sia politico che materiale. Basti pensare al caso Shalabayeva e alle contestazioni contro ENI della Nigeria e di alcune ONG; a febbraio la Procura della Repubblica di Milano ha chiesto il rinvio a giudizio per l’amministratore delegato dell’Eni Claudio Descalzi e per altri 12 indagati, tra cui l’ex ad Paolo Scaroni e Luigi Bisignani, per un presunto caso di corruzione legato all’acquisizione dei diritti di sfruttamento del mega blocco petrolifero OPL245, in Nigeria: si parla di oltre un miliardo di euro.

OPL 245 è un immenso blocco estrattivo situato in Nigeria sfruttato da ENI e Shell; la Nigeria è uno degli stati da cui provengono oggi più immigrati nel nostro paese e che lamenta una maggiore ingerenza nella sua Natura e nella sua economia da parte dell’Italia; è da pensarci quando si parla di immigrazione. La comunità Ikebiri oggi, come quella Bodo ieri contro la Shell dimostrano che l’emigrazione nigeriana non nasce dal nulla. Il caso Ken Saro-Wiwa degli anni 90 (difensore del popolo Ogoni) dimostra anche che questi contrasti sono ben fondati, essendo iniziati con la scoperta stessa del petrolio nigeriano nel 1956.

Kenule Beeson Saro-Wiwa, uno dei maggiori intellettuali africani, impiccato nel 1995*

Ma questo post non vuole solo dare qualche informazione sulla politica internazionale di ENI, che per i chimici italiani rimane una azienda “di riferimento”, ma soprattutto svelare quanto ci sia di greenwashing, di falso ambientalismo in una politica energetica del nostro paese che è in grave ritardo.

Oggi ci occupiamo della parola d’ordine sul metano come alternativa fossile “verde” al petrolio e al carbone. E’ veramente così?

ENI ne è convinta perchè sulle pagine del Fatto pubblicizza la sua strategia con grande enfasi e cerca di sfatare quelli che chiama i miti sul gas; alcune cose sono vere, ma di quelle più importanti ENI non dice nulla, anzi nicchia (al mito 3 dice esplicitamente una bufala che oggi contesteremo). Andatevela a leggere anche se prima potete riflettere sul fatto che il giornale in questione ha avuto una ampia polemica con ENI a proposito della pubblicità proprio qualche mese fa in rapporto all’informazione, denunciando che a causa degli articoli sulla questione nigeriana Eni voleva tagliare la pubblicità; oggi ENI sta facendo pubblicità proprio sul Fatto e vedremo se il Fatto continuerà a fornire informazioni sulla questione nigeriana. Siamo “su con le rece” come si dice a Trento, su con le orecchie, vedremo.

Allora il metano è un gas combustibile; facciamo un confronto fra i tre principali combustibili, carbone, petrolio e gas metano e vediamo quanti gas serra producono nella loro combustione.

I dati a cui si riferisce anche ENI sono riportati qui; e sono anche facilmente calcolabili; facciamo un po’ di stechiometria, prendiamo una tabellina adeguata:

C+O2=CO2 + 32.5MJ/kg di C

CH2+1.5O2=CO2 +H2O+ 42MJ/kg di CH2

CH4+2O2=CO2 +2H2O+ 55.5MJ/kg di CH4

Carbone (antracite), composizione approssimata C, entalpia di combustione= 32.5MJ/kg, CO2 emessa per kg 44/12=3.67kg, CO2 emessa per MJ 0.114kg

Petrolio, composizione approssimata CH2, entalpia di combustione=42 MJ/kg, CO2 emessa per kg 44/14=3.14kg , CO2 emessa per MJ 0.074kg

Metano, composizione approssimata CH4, entalpia di combustione=55.5MJ/kg CO2 emessa per kg 44/16=2.75kg; CO2 emessa per MJ 0.049kg

Sorvolo sui dettagli delle composizioni, giusto per far capire i ragionamenti ai non addetti; dunque il rapporto per unità di energia prodotta ottenuto con questo semplice conto ci dice che il carbone produce più del doppio del diossido rispetto al metano e il petrolio circa il 50% in più (2:1.5:1).

I dati dell’EIA sono leggermente diversi e ovviamente più precisi, sono espressi in libbre di diossido per milione di BTU: (228.6:161.3:117 ossia 1.95:1.38:1) e perfino più sfavorevoli al metano, ma qui vale il senso generale più che il valore numerico.

Ma questo risultato è quello definitivo? La risposta è no. Perchè quando si usa un combustibile occorre indagare tutta la catena della estrazione, produzione, distribuzione. E qui le cose cambiano.

L’estrazione ha a che fare con l’EROEI del combustibile, ossia col suo costo energetico e da questo punto di vista il carbone con il suo bassissimo costo estrattivo batte sia il petrolio che il gas; d’altronde riperde poi posizioni nella parte trasporto, dove la bassa densità lo sfavorisce. Trasportare carbone è semplice ma costoso (occupa grandi volumi in rapporto all’energia offerta). Per questo il carbone è prevalentemente utilizzato in prossimità dei luoghi di produzione (in generale, in Italia abbiamo casi di carbone importato dall’altra parte dell’oceano).

Ma il dato più eclatante da considerare è che il metano è esso stesso un gas serra e anche molto più potente del diossido di carbonio. L’effetto serra del metano espresso come forzante termica nei confronti dell’atmosfera varia nel tempo poichè la sua vita media è relativamente breve, dell’ordine del decennio, dopo si trasforma essenzialmente ma non solo in diossido; ancora una volta facciamo una approssimazione ma consideriamo solo l’effetto principale.

Per stimare l’effetto serra di una sostanza si usa una scala che dipende dalla sostanza e dal tempo considerato, ossia dalla velocità con cui la sostanza una volta immessa in atmosfera viene poi riciclata; questa scala vale 1 per la CO2 qualunque sia t e viene chiamata GWPXX, dove XX indica il periodo di tempo considerato in anni; dunque se cerchiamo il GWP20 o il GWP100 per il metano troveremo due valori che sono 84-87 e 28-36 rispettivamente; il che significa che a parità di concentrazione dopo 20 anni o dopo 100 anni l’assorbimento serra comporterà una forzante rispettivamente 84-87 volte o 28-36 volte superiore a quella di una eguale quantità di CO2.

Questi valori sono i più recenti valori stimati dall’IPCC; il metano è un potente gas serra che fortunatamente è presente in concentrazione molto più bassa di altri in atmosfera anche se rapidamente crescente.

Ricordo che uno degli ambiti di studio di Guido Barone, mio tutor di tesi a Napoli (e che ci ha lasciati da poco) era proprio questo, capire il ruolo potenziale del metano disciolto in acqua di mare (che è una quantità stratosferica nel permafrost e in prossimità delle coste dei mari polari). Io stesso feci una tesi sulla capacità delle soluzioni acquose di solubilizzare piccole molecole di idrocarburo nelle cavità dell’acqua “strutturata”, anche se allora 40 anni fa lo scopo era diverso, era di comprendere meglio la struttura terziaria delle proteine.

Il metano, l’etano sono parecchio solubili in acqua, specie a bassa temperatura e ad una pressione di qualche atmosfera; la formazione di idrati contenenti questi gas nei grandi impianti di pompaggio del gas naturale è uno dei problemi di funzionamento principali e il loro potenziale rilascio da parte del permafrost e dei ghiacci polari uno dei maggiori rischi ambientali e climatici. (si veda qui)

Torniamo a noi; bruciando metano produco 100 parti di diossido di carbonio e bruciando petrolio ne produco circa il 40-50% in più, 150 parti; bruciando carbone circa il doppio; ma questo vantaggio del metano può venire rapidamente soverchiato dalle perdite di metano dovute all’estrazione, al trasporto e allo stoccaggio di metano; il caso Alysso canyon lo abbiamo raccontato da poco.

Si stima che alcuni percento del totale della massa di metano usata come combustibile vengano persi nelle varie fasi; per ogni percento perso l’effetto serra del metano aumenta di una quantità stimabile dall’84-87% al 28-36% in più a seconda se consideriamo un lasso di tempo di 20 anni o 100 anni; dunque è facile comprendere che questo “piccolo” livello di perdita dell’1% renderebbe il metano comparabile su alcune scale temporali con il petrolio; se la perdita cresce perfino col carbone!

Dice EPA:

Methane (CH4) is estimated to have a GWP of 28–36 over 100 years. CH4 emitted today lasts about a decade on average, which is much less time than CO2. But CH4 also absorbs much more energy than CO2. The net effect of the shorter lifetime and higher energy absorption is reflected in the GWP. The CH4 GWP also accounts for some indirect effects, such as the fact that CH4 is a precursor to ozone, and ozone is itself a GHG.

(https://www.epa.gov/ghgemissions/understanding-global-warming-potentials – Learn why)

Possiamo schematizzare così:

CO2 equivalente prodotta da …(effetto a 20 anni)

Metano sola combustione= 100

Petrolio sola combustione=150

Metano con perdite 1%= 184-187

Carbone sola combustione=200

Metano Con perdite 2%=268-274

Metano Con perdite 3%=352-361

CO2 equivalente prodotta da …(effetto a 100 anni)

Metano sola combustione= 100

Petrolio sola combustione=150

Metano con perdite 1%= 128-136

Metano Con perdite 2%=156-172

Metano Con perdite 3%=184-208

Carbone sola combustione=200

A quanto ammontano le perdite di metano?

Negli anni recenti ci sono stati parecchi ricercatori che hanno cercato di rispondere a questa domanda; e la cosa è arrivata al grande pubblico tramite i grandi giornali esteri (non sia mai che quelli italiani se ne occupino); dati definitivi non mi risulta ci siano, ma citerò qui due o tre articoli secondo me importanti per capire le cose.

Il primo è un lavoro di PNAS del 2012 nel quale si conclude:

We find that a shift to compressed natural gas vehicles from gasoline or diesel vehicles leads to greater radiative forcing of the climate for 80 or 280 yr, respectively, before beginning to produce benefits. Compressed natural gas vehicles could produce climate benefits on all time frames if the well-to-wheels CH4 leakage were capped at a level 45–70% below current estimates. By contrast, using natural gas instead of coal for electric power plants can reduce radiative forcing immediately, and reducing CH4 losses from the production and transportation of natural gas would produce even greater benefits. There is a need for the natural gas industry and science community to help obtain better emissions data and for increased efforts to reduce methane leakage in order to minimize the climate footprint of natural gas

Nel secondo lavoro su Environmental Science and Technology del febbraio di quest’anno si conclude che

Presently, there is high uncertainty in estimates of methane (CH4) emissions from natural gas-fired power plants (NGPP) and oil refineries, two major end users of natural gas. … At NGPPs, the percentage of unburned CH4 emitted from stacks (0.010.14%) was much lower than respective facility-scale losses (0.100.42%), and CH4 emissions from both NGPPs and refineries were more strongly correlated with enhanced H2O concentrations (R2avg = 0.65) than with CO2 (R2avg = 0.21), suggesting noncombustion-related equipment as potential CH4 sources. Additionally, calculated throughput-based emission factors (EF) derived from the NGPP measurements made in this study were, on average, a factor of 4.4 (stacks) and 42 (facility-scale) larger than industry-used EFs. Subsequently, throughput-based EFs for both the NGPPs and refineries were used to estimate total U.S. emissions from these facility-types. Results indicate that NGPPs and oil refineries may be large sources of CH4 emissions and could contribute significantly (1.5 ± 0.8 Tg CH4/yr, 95% CL) to U.S. emissions.

Nel terzo, un bel lavoro italiano (Environmental Pollution 164 (2012) 125e131) fatto dai colleghi dell’IBIMET-CNR di Firenze e della Fondazione Edmund Mach di S. Michele all’Adige, in Trentino a pochi chilometri da me (fra l’altro col sempreverde Franco Miglietta) si analizza la situazione di una grande città come Firenze concludendo che:

Long-term fluxes of CO2, and combined short-term fluxes of CH4 and CO2 were measured with the eddy covariance technique in the city centre of Florence. CO2 long-term weekly fluxes exhibit a high seasonality, ranging from 39 to 172% of the mean annual value in summer and winter respectively, while CH4 fluxes are relevant and dont exhibit temporal variability. Contribution of road traffic and domestic heating has been estimated through multi-regression models combined with inventorial traffic and CH4 consumption data, revealing that heating accounts for more than 80% of observed CO2 fluxes. Those two components are instead responsible for only 14% of observed CH4 fluxes, while the major residual part is likely dominated by gas network leakages. CH4 fluxes expressed as CO2 equivalent represent about 8% of CO2 emissions, ranging from 16% in summer to 4% in winter, and cannot therefore be neglected when assessing greenhouse impact of cities.

In tutti e tre i casi si riconosce un ruolo importante e ancora non completamente valutato alle emissioni dirette di metano dagli impianti di produzione, trasporto e distribuzione; questi risultati ci costringono a concludere che la sostituzione del metano agli altri due fossili carbone e petrolio non è necessariamente un vantaggio, ma anzi in alcuni casi potrebbe peggiorare la situazione specie nella sostituzione al petrolio a meno di non ridurre significativamente le perdite di metano in ogni fase della catena produttiva.

I dati americani sembrano più ampi e precisi, quelli europei sono pochi; c’è stato un congresso dedicato nel 2016, partito dalla constatazione che:

If methane leakage  accounts  for  more  than  2.7%  of  gas  produced,  advantages  of  natural  gas  versus coal are lost in the immediate2……  This  raises  the  question  of  what  the  true  carbon  footprint  of  natural gas is once regional leakage rates are taken into account, and therefore its real benefits as  a  “transition”  fuel.

E ancora:

At     a     global     scale,     self reporting   methane   emissions   from   the   O&G   sector   notify   significant   discrepancies:   in   the   Middle   East     areafor     instance,     Kuwait     report    leakage     rates     26     times     lower     than     Bahrain,   although   they   show   similar   natural   gas   production   profiles.   Amongst   the   20   largest   NG   producers, while the US,     Canada     and     Russia     report     gas     leakages     between     1%     and     3%,   other     countries   like   Qatar,     Saudi     Arabia,     China,     Norway     and     the     Netherlands     report     almost   no   emission.

E infine in un lavoro su Nature della fine 2016 dà una valutazione globale vicina al 2%:

We find that total fossil fuel methane emissions (fossil fuel industry plus natural geological seepage) are not increasing over time, but are 60 to 110 per cent greater than current estimates owing to large revisions in isotope source signatures. We show that this is consistent with the observed global latitudinal methane gradient. After accounting for natural geological methane seepage, we find that methane emissions from natural gas, oil and coal production and their usage are 20 to 60 per cent greater than inventories. Our findings imply a greater potential for the fossil fuel industry to mitigate anthropogenic climate forcing, but we also find that methane emissions from natural gas as a fraction of production have declined from approximately 8 per cent to approximately 2 per cent over the past three decades.

Quindi questa stima è che attualmente ci sia una emissione dell’ordine del 2% a livello mondiale.

Non è facile fare i conti; per esempio ENI dichiara da parte propria dei dati come questi; consideriamo solo le emissioni di metano incombusto e da emissioni fuggitive (non stiamo dunque esaurendo il totale delle emissioni di metano nelle varie fasi estrattive, di trasporto e produttive):
2014- 124.000 ton

2015- 99.000 ton

2016- 85.000 ton

Se consideriamo il potenziale GHG di questo metano in termini di CO2 eq a 20 anni troveremo che solo in questi tre anni ha emesso l’equivalente di quasi 27Mton, e ha in programma al 2025 di ridurle al 20% del 2014 , circa 24.000 ton ossia oltre 2 Mton equivalenti.

Nel 2016 l’ENI ha manipolato circa 60Mton di gas naturale (83Gm3), che produrrebbero circa 165Mton di CO2, ma aggiungendoci questa sola parte del metano fuggitivo le emissioni crescerebbero di altri 7 Mton equivalenti; e il resto?

Proprio per questo motivo dare per scontato il vantaggio del metano ed investire sul metano potrebbe costituire una strategia sbagliata; nell’immediato i dati mondiali sono tali da concludere che la sostituzione è nei primi 20 anni certamente peggiorativa rispetto al petrolio e potrebbe risultare utile solo rispetto al carbone sul lungo periodo. Sul lungo periodo, nel quale le cose migliorerebbero da qua a cento anni, dovremo comunque essere passsati ad altre fonti e la conclusione è che il metano non ci da una mano, anzi è peggiorativo rispetto al passaggio diretto all’elettrico.

La strategia in corso nel mondo è il passaggio alle rinnovabili; la strategia da attuare per tener fede all’impegno di Parigi 2015 è passare alle rinnovabili; non ci sono alternativi o trucchi fossili di alcun tipo. Occorre con rapidità stimare le perdite di metano in Europa e porvi rimedio se possibile per sostituire il metano al carbone in alcune delle centrali elettriche, ma in tutti i casi in cui il confronto è metano- petrolio questo è un falso problema e la scelta di una nuova sorgente sarà per l’elettrico non per il gas naturale.

Mentre scrivo queste righe leggo della folle scelta di Trump: uscire da Parigi 2015? Avrà le sue ragioni, ma nulla di razionale; il processo di transizione energetica è inarrestabile. Ma allora direte voi perchè ti preoccupi: beh prima di tutto il diavolo è nei dettagli (ed oggi ne abbiamo visto uno) e inarrestabile non vuol dire che non può essere rallentato; e a noi manca il tempo.

Prossimamente analizzeremo altri elementi della pubblicità di ENI.

 

  • *« “…tutti noi siamo di fronte alla Storia. Io sono un uomo di pace, di idee. Provo sgomento per la vergognosa povertà del mio popolo che vive su una terra molto generosa di risorse; provo rabbia per la devastazione di questa terra; provo fretta di ottenere che il mio popolo riconquisti il suo diritto alla vita e a una vita decente. Così ho dedicato tutte le mie risorse materiali ed intellettuali a una causa nella quale credo totalmente, sulla quale non posso essere zittito. Non ho dubbi sul fatto che, alla fine, la mia causa vincerà e non importa quanti processi, quante tribolazioni io e coloro che credono con me in questa causa potremo incontrare nel corso del nostro cammino. Né la prigione né la morte potranno impedire la nostra vittoria finale…” . »
    (Ken Saro-Wiwa)

Diverse culture alimentari a confronto.

In evidenza

Marino Melissano*

Vegetariani e vegani: sono sinomini?

La distinzione tra le due culture alimentari, che a un primo sguardo potrebbe apparire molto sottile, segna al contrario una profonda distanza tra due scelte che hanno implicazioni assai divergenti.

Vegetarianesimo

In questa categoria sono inclusi tutti coloro che escludono dalla propria alimentazione la carne di ogni animale (di terra, di aria e d’acqua), senza però rinunciare a prodotti di derivazione animale, come latte, uova, formaggi e latticini, sulla base di motivazioni etiche, religiose e igienistiche.

Questo modello è anche detto latto-ovo-vegetarianismo

Un vegetariano, dunque, non si nutre di pesce. In questa categoria alcuni comprendono anche i cosiddetti semi-vegetariani che, come dice il termine, sono vegetariani… ma non del tutto! I semivegetariani sono coloro che si nutrono di carne, pesce e volatili con una frequenza inferiore a una volta alla settimana. È comunque fuori luogo mettere nel gruppo chi esclude solamente un tipo di carne dalla sua alimentazione e si nutre abitualmente di altre carni (per esempio quella di pesce).

Il termine “vegetariano” non esisteva prima dell’ottocento. In precedenza, ogni regime alimentare di questo tipo era chiamato “pitagorico”, in onore del pioniere di questo tipo di alimentazione in occidente: il matematico Pitagora appunto. L’etimo è il latino “vegetus”, che significa: sano, vigoroso.

Latto-vegetarianismo

A differenza del latto-ovo-vegetarianismo, questo modello alimentare esclude anche le uova. E’ frequente nei Paesi asiatici e indiani in particolare.

Le origini

Le prime attestazioni sul vegetarianismo si ritrovano nelle culture religiose e filosofiche della Grecia e dell’India antiche.

In ambito pitagorico (VI secolo a.C.) è nota l’ingiunzione di astenersi dal cibarsi degli animali (ἔμψύχον ἀπέχου).

Dall’orfismo (VI-V secolo a.C.) deriva l’obbligo dell’astinenza dalle uccisioni, eredità del dramma cosmico dello sbranamento del dio Dioniso da parte dei Titani.(http://www.portalefilosofico.com>orfismo_testo).

Dall’induismo deriva la nozione di ahiṃsā (lett. “astenersi dal recare danno”), che verrà promossa come regola di vita sia dai brahmini, sia dal jainismo, sia dal buddhismo.

I rituali primitivi di caccia

Lo studioso americano Stanley Walens scrive:

molti rituali sintetizzano l’immagine del cacciatore e della sua preda o con l’imitazione mimetica dell’animale o con formule verbali. Le immagini di questi rituali sottolineano la necessità della collaborazione tra cacciatore e preda, affermando che tale collaborazione rientra nel giusto ordine dell’universo. Una volta stabilito il rapporto morale e simbolico corretto, si crede che la preda accetti la morte di buon grado. (Stanley Walens, Animali in “Enciclopedia delle religioni”, vol. 4. Milano, Jaca Book, 1998, p. 70)

E ancora: in molti rituali di caccia si parla non di uccisione, ma di nutrizione e crescita, come se la preda animale dovesse ricevere le stesse cure degli animali domestici e del raccolto. In entrambi si evidenzia la rigenerazione, il ciclo della rinascita e il riconoscimento dei processi dell’universo, di fronte ai quali l’uomo resta impotente. Il mondo antico ritualizza l’uccisione e la conseguente manducazione degli animali, all’insegna del senso di colpa e della riparazione, come nel caso del sacrificio greco, per il quale è indispensabile ottenere l’assenso della vittima, per mezzo dello “hypokyptein”, ed è presente “l’urlo funerario-ololughé”, pronunciato dalle donne al momento dello sgozzamento dell’animale.

Lo storico Vernant nota che i sacrifici cruenti si accompagnano con sacrifici in cui non c’è alcuna uccisione di animali, come nel caso di Apollo Genetor e di Zeus Hypatos in Attica: ciò che viene offerto alla divinità si limita a frutta, olio, focacce e miele. Tali sacrifici, a differenza di quelli cruenti, sono cosiddetti “puri”, e a questo modello sacrificale si appelleranno le scuole vegetariane, orfiche e pitagoriche, che, invece, arrivano a considerare empio il sacrificio dell’animale e la manducazione delle sue carni.

Il vegetarianesimo nel ‘600 e nel ‘700

La Gran Bretagna è considerata la patria del vegetarianismo moderno. Il primo paladino è il cappellaio Roger Crab (1621-1680), che emerge sulla scena inglese durante la rivoluzione degli anni quaranta del Seicento.

Nella seconda metà del Seicento, durante l’espansione coloniale inglese, si aggiungono in favore del vegetarianismo nuovi argomenti. Una figura emblematica di questa fase è lo scrittore e mercante inglese Thomas Tryon (1634-1703), che denuncia il comportamento dell’europeo cristiano, definendolo un oppressore intollerante verso uomini ed animali: abbandona ogni lusso e sposa una dieta vegetariana. The Way to Health è un saggio del 1697, in cui la poetessa Aphra Behn, nell’introduzione, elogia in versi la sua dieta.

Nel Settecento il vegetarianismo inizia ad essere un argomento sostenuto e diffuso anche dai medici (Linneo e discepoli), in nome della salute e delle caratteristiche dell’anatomia e della fisiologia umana che, a partire dall’apparato digerente, dalla dentatura e dalle mani, dimostrerebbero la natura vegetariana dell’uomo. (www.circolovegetarianocalcata.it).

IL VEGETARISMO MODERNO

In Inghilterra il fermento del   vegetarianismo nel panorama  culturale porterà, nella prima metà dell’Ottocento, alla nascita di un movimento vegetariano e alla costituzione della Vegetarian Society, fondata il 30 settembre 1847 a Ramsgate (http://www.vegsoc.org).

Nei decenni successivi sorsero altre società vegetariane anche in altri paesi: nel 1867 il teologo Eduard Baltzer fondò la prima società vegetariana della Germania; verso la fine dell’Ottocento viene fondata la Société Végétarienne de France (http://AVF-www.vegetarisme.fr), mentre l’Associazione Vegetariana Italiana viene fondata a Perugia nel 1952 (http://www.vegetariani.it), con il nome di Società Vegetariana Aldo Capitini, dal grande intellettuale gandhiano, che vedeva nel vegetarismo un ampliamento dell’unità d’amore, in cui tutti gli animali diventano soggetti di una dignità propria da valorizzare e rispettare affettuosamente..

Tra le figure celebri del periodo: Alphonse de Lamartine, Richard Wagner, Lev Tolstoj, Gandhi, Bernard Shaw.

VEGANISMO O VEGETALISMO

La categoria dei vegani è composta da tutti coloro che escludono dalla loro alimentazione animali e prodotti da questi derivati. La loro alimentazione prevede solo l’assunzione di cibi di origine vegetale. Quindi, i vegani, a differenza dei vegetariani, non mangiano né latte né uova, né i prodotti derivati o che contengono questi due cibi. La scelta vegana è una filosofia, uno stile di vita improntato ad un rispetto etico del mondo che ci circonda: vengono esclusi tutti i prodotti derivati dallo sfruttamento degli animali e, quindi, cuoio, lana, seta,pellicce e così via. I vegani non utilizzano inoltre alcun prodotto cosmetico testato su animali, e non partecipano agli spettacoli circensi o a sport come la caccia o l’ippica.

La parola “vegano” è stata coniata per la prima volta nel 1944 da Donald Watson, che fondò, insieme ad alcuni amici, la “Vegan Society” ed è stata formata prendendo la parola inglese “vegetarian” e tenendone solo gli estremi (veg….an): l’inizio e la fine del vegetariano. Watson, già da piccolo, osservando degli animali presenti nella fattoria di suo zio, ebbe modo di dire: “Ero circondato da animali interessanti. Tutti loro “davano” qualcosa: il cavallo della fattoria trainava l’aratro, un altro tirava il calesse, le vacche “davano” il latte, le oche “davano” le uova e il gallo era un’utile sveglia. All’epoca non avevo ancora realizzato che avesse anche un’altra funzione. Le pecore “davano” la lana. Non riuscivo a capire cosa “davano” i maiali, ma mi sembravano delle creature tanto amichevoli, sempre felici di vedermi.” Poi ebbe modo di assistere alla macellazione dei maiali e divenne vegetariano all’età di 4 anni.

Data la mancanza di carne, pesce, formaggi e derivati sono diffusi surrogati, quali soia e suoi derivati (latte, yogurt, burro, panna di soia, tofu e lecitina) o seitan, ricavato da cereali deglutinati. Dall’alimentazione vegana sono esclusi alcolici, tabacco e bevande stimolanti, come caffè e tè, anche se è consentito un uso limitato di tè verde, sostituito dal tè kukicha, infuso ottenuto dalla Camellia Sinesis, privo di teina e ricco di calcio e ferro.

Sono consigliati cibi arricchiti artificialmente, come si può vedere dalla piramide vegana, per far fronte soprattutto alla carenza di Vi. B12.

CRUDISMO VEGANO (Raw food)

Ammette esclusivamente cibi vegetali non sottoposti a trattamenti termici oltre i 42 °C (è ammessa l’essiccazione). Questo modello dietetico è composto prevalentemente da frutta (70-80%), verdura, soprattutto a foglia verde (10-20%), noci e semi vari (5%), oltre a cereali e legumi germogliati. È da distinguersi dal crudismo non vegano, in cui si utilizzano latticini non pastorizzati e perfino carne e pesce crudi.

LA MACROBIOTICA (Makròs+bios = lunga vita)

Antichissima filosofia orientale, nata oltre 5000 anni fa, il cui orientamento è rappresentato da una visione olistica dell’uomo: ogni elemento è in equilibrio con gli altri e il cibo è fondamentale per mantenere l’armonia tra la mente e il corpo.

Diffusa dal medico e filosofo giapponese Sakurazawa, noto con lo pseudonimo di Ohsawa, nato a Tokyo nel 1893, è l’applicazione dei principi filosofici orientali alla pratica giornaliera, dove l’equilibrio, anche alimentare, è raggiunto attraverso gli “occhiali magici”, cioé I principi dello Yin (forza centrifuga-cibi acidi, come latte e derivati, frutta,tè, spezie) e dello Yang (forza centripeta-cibi alcalini come sale, carne, pesce, pollo, uova). Questi due principi sono opposti, ma complementari.

Secondo Ohsawa, seguendo quotidianamete una corretta alimentazione, è possibile mantenere l’equilibrio Yin-Yang e, dunque, un buon livello di salute. Esistono comunque dei cibi “bilanciati”, quali, ad esempio, i cereali, i legumi e i semi oleosi.

La dieta macrobiotica abolisce i cibi sofisticati e predilige alimenti di produzione naturale. I cereali devono essere non raffinati, integrali e, in questo gruppo, rientrano il “kokoh”, mix di farine provenienti da cereali differenti, arricchite con sesamo e soia e “l’arrowroot”, fecola ricavata dall’omonima pianta.

Tra gli alimenti macrobiotici ricordiamo:

– il tahin, succedaneo del burro, ricavato dal sesamo, aggiunto spesso alla salsa di soia per il condimento di zuppe;

– il gomasio, ricavato dalla lavorazione del sale marino, unito ai semi di sesamo;

– le alghe: tra le più note l’iziki, che si consuma con il tamari (salsa di soia); il wakame; il kombu;

la nato; il dashi; la dulse, dal colore rosso porpora;

– i legumi, soprattutto: lenticchie, ceci, soia e azuki (fagiolo rosso di soia). L’acqua di cottura dei legumi è consigliata come bevanda, perché ricca di sali minerali e vitamine.

Tra le regole da osservare: l’eliminazione di zucchero, dolci, caramelle e miele, frutti esotici, patate, pomodori, melanzane, latte e derivati, verdure surgelate, spezie, sale comune, caffé (al suo posto si possono usare surrogati, quali il “jannoh”, ricavato dall’unione tra frumento, soia, bardana e radici di tarassaco torrefatte; o il “dendelio”, ottenuti da radici di tarassaco e cicoria torrefatte).

La macrobiotica predilige i prodotti della pesca alla carne e consiglia una prolungata la masticazione al fine di garantire l’efficacia digestiva e l’appagamento gustativo.

(da Marino Melissano – Alimenti e alimentazione – Edagricole)

ALIMENTAZIONE ONNIVORA

In biologia un organismo è quello che si alimenta sia con prodotti di origine animale (carne, uova, latte e derivati, pesce e prodotti del mare), che vegetale (frutta, verdura, cereali e legumi).

Secondo i principi della Scienza dell’Alimentazione questo sarebbe il regime alimentare più adatto anche all’uomo, che ha bisogno di una dieta bilanciata composta da proteine, carboidrati, grassi, vitamine e minerali.

Nell’ambito dell’alimentazione onnivora la Dieta mediterranea è la più famosa e la più equilibrata.

Essa si basa su un consumo moderato di grassi da prodotti animali, privilegiando frutta, verdura, legumi, cereali integrali, frutta secca, pesce e olio di oliva Anche il vino, bevuto moderatamente durante i pasti, , rappresenta una forma di protezione per il suo contenuto di antiossidanti.

Per tutti i motivi descritti, i suoi sostenitori ritengono che la dieta mediterranea sia quella più adeguata a coprire i normali fabbisogni nutrizionali.

Essa normalmente prevede cinque pasti giornalieri di cui tre principali (colazione, pranzo e cena) e due spuntini, a metà mattinata e nel pomeriggio. La composizione media degli alimenti

comprende:

dal 55 al 65% di carboidrati, dei quali circa il 90% costituiti da zuccheri complessi e circa il 10% da zuccheri semplici;

dal 10 al 15% di proteine, delle quali i 2/3 di origine animale e 1/3 di origine vegetale dal 25 al 30% di grassi, soprattutto insaturi.

EQUILIBRIO NUTRIZIONISTICO

Le quantità giornaliere raccomandate di macro-nutrienti (Lipidi-Protidi-Glicidi) e di micronutrienti (vitamine e Sali minerali) sono le seguenti:

Glucidi: 315-350 g;

Protidi: 55-60 g;

Lipidi: 45-55 g;

Vit. A: 500 mcg; (fonti di origine animale, sedano, broccoli, cavoli, frutta colorata);

Vit. B1: 1,0 mg; (fonti di origine animale, lievito di birra, soja, legumi, asparagi, germe di

grano, cereali integrali, noci, cicoria, spinaci, bietole, alga spirulina)

Vit. B2: 1,3 mg; (fegato e frattaglie, latte, lievito di birra, muesli, germe di frumento, radicchio verde, soja secca)

Vit. B12: 2,0 mcg; (vongole, ostriche, polipo, sgombri, salmone, crostacei, sardine e aringhe, fegato, uova, yogurt, latte e latticini, cereali e prodotti di soia fortificati)

Niacina (Vit. PP): 14 mg;

Vit. C: 60 (donne)-75 mg (uomini); (succo d’uva, peperoni, latte, kiwi, cavoli e cavolfiori,broccoli, fragole, agrumi, radicchio verde, pomodori)

Vit. D: 10 mcg; (olio di fegato di merluzzo, sgombro, anguilla, trota, salmone affumicato, pesce spada, uova)

Fe: 10 mg; (frattaglie, carne rossa, carne di tacchino, merluzzo, spigole, salmone, molluschi, seppia, alici

DIETE A CONFRONTO

L’alimentazione tradizionale, e specialmente la dieta mediterranea, per 2.000 Kcal mediamente occorrenti ad un adulto in attività lavorativa moderata, fornisce:

325 g di glucidi (65%)

55 g di lipidi (25%)

57 g di proteine   (10%) e, se ben equilibrata, tutti gli oligoelementi; quindi, risulta nutrizionisticamente equilibrata.

Premesso che in Italia il numero di vegetariani e vegani ha raggiunto un picco storico dell’8% della popolazione, pari a quasi 5 milioni di cittadini (dati Eurispes 2016), che il 7,1% si dichiara vegetariano (contro il 5 del 2015) e l’1% vegano, corrispondente a 600.000 persone;

la dieta vegetariana, contrariamente ad altre correnti di pensiero simili, risulta sostenibile e potenzialmente equilibrata.

La dieta vegetariana costituisce un regime alimentare ricchissimo di antiossidanti, provitamine A (beta-carotene), vitamina C, acido folico, potassio, magnesio, fitosteroli e fibra alimentare.

La dieta vegana non può essere classificata quale regime alimentare equilibrato e, per essere protratta nel lungo termine, necessita dell’utilizzo di alimenti fortificati o di integratori alimentari; essa, oltre a non apportare le giuste quantità di alcuni nutrienti, contiene notevoli concentrazioni di agenti anti-nutrizionali chelanti, come: tannini (antiossidante), ossalati e fitati, che contribuiscono a ridurre ulteriormente l’assorbimento di minerali come ferro, calcio, zinco e selenio.

D’altro canto, la dieta vegana risulta molto utile nella prevenzione dell’aterosclerosi.

Concludiamo che, con le giuste integrazioni, anche le diete vegetariane e vegane possono risultare equilibrate.

Polemiche in corso

Ma allora, perché tante polemiche e opposti estremismi? Scontri ideologici accesissimi su giornali, tv e FB: abbiamo letto frasi quali animalisti talebani, nazivegani e, in risposta, carnivori assassini, macellai killer!

Giuseppe Cruciani, di Radio 24, conduttore de “La Zanzara”, contestato da un gruppo di animalisti.

Bimbo di 15 mesi, che pesava quanto uno di 3 mesi, ricoverato in stato di malnutrizione a causa di una dieta rigidamente vegana, che il Tribunale di MI ha tolto ai genitori ed affidato ai nonni.

Eppure, l’indagine Eurispes ci dice che il 46,7% di coloro che si dichiarano vegetariani o, ancor più, vegani, sono mossi da ragioni salutistiche; il 30% dalla sensibilità verso gli animali; il 12% dall’attenzione per l’ambiente.

Lo chef Fabio Picchi, autore di “Firenze-Passeggiate tra cibo e laica civiltà”, inno all’orgoglio carnivoro, rispettosamente dice: “sono così rispettoso del pensiero altrui, che non riesco a deridere chi non mangia carne. Rispetto i vegani e pretendo rispetto. Tuttavia, trovo barbaro incolpare chi mangia un piccione una volta l’anno e sottacere chi avvelena la terra e le nostre vite”.

Questa è la strada da seguire, quella del rispetto reciproco, ma occorre anche un’informazione-formazione capillare di tutti i cittadini, in modo che tutti, nel rispetto dei differenti stili di vita, imparino come cibarsi in modo equilibrato.

Riferimenti.

http://veganogourmand.it/consigli/differenza-tra-vegetariano-e-vegano/

https://it.wikipedia.org/wiki/Vegetarianismo

https://it.wikipedia.org/wiki/Diete_vegetariane

http://www.gazzettadelgusto.it/alimentazione-diete/alimentazione-onnivora/

http://www.my-personaltrainer.it/alimentazione/esempio-dieta-vegana.html

*Marino Melissano è stato fino a poco tempo fa vicepresidente di Altroconsumo, uno dei pochi chimici (già docente universitario, libero professionista, coordinatore di progetti europei, membro dell’ordine dei Chimici in Trentino) in una posizione chiave nelle associazioni di consumatori e ambientalisti.

Le “seccature” di Seveso e Manfredonia: una riflessione.

In evidenza

Claudio Della Volpe

Nel 1976 mi sono laureato e dunque quell’anno me lo ricordo positivamente; finalmente avevo concluso un iter di studio e di crescita anche umana che mi hanno reso quel che sono, un chimico che è impegnato sulla barricata di un ambiente sostenibile e di una scienza democratica.

Mi ero iscritto nel 1968 e sarebbe stato impossibile per chiunque in quegli anni bollenti rimanere alla finestra mentre il mondo intero scendeva in piazza chiedendo una società nuova e rendendosi conto che, in fondo, era possibile.

I sogni e gli stimoli di quel tempo hanno fatto i conti con la realtà quotidiana, ma non sono mai morti.

Anzi non moriranno mai.

Per me che ero il primo della mia famiglia a laurearmi, ma credo per chiunque, Napoli era allora un crocevia di cultura e di innovazione; dove si seguivano le lezioni di Paolo Corradini, le conferenze di Liguori, di Prigogine, o di Enzo Tiezzi, dove ti prendevi il caffè discutendo (e non solo) di politica con Ennio Galzenati e Emilio Del Giudice, ti laureavi con Guido Barone, la sera passavi da Vittorio Elia o da Pina Castronuovo; gli studenti indicati come esempio si chiamavano Francesco Lely, il giorno della laurea avevi come compagno di prova Enzo Barone.

Insomma la chimica e la scienza napoletane non avevano nulla da invidiare a nessuno e costituivano un perenne stimolo culturale e scientifico.

Proprio in quell’anno di grazia 1976 ci furono due episodi che segnarono il clima dell’ambientalismo, della chimica, della scienza e che determinarono poi per anni a venire l’idea di chimica e di scienza del grande pubblico e vorrei ricordarli brevemente con voi: uno lo conoscete certamente, Seveso, l’altro di pochissimo successivo, forse non lo ricordate, ma è egualmente importante, Manfredonia.

Seveso è stato analizzato ripetutamente e magistralmente sulle pagine di C&I; ricordo qui brevemente due articoli che vi consiglio di leggere a questo riguardo e che sono scaricabili liberamente; uno di Ferruccio Trifirò che trae le lezioni tecniche dell’evento e l’altro di Jorg Sambeth, direttore tecnico della Givaudan-Roche che scrisse anche un libro sui retroscena di quell’evento, “Zwischenfall in Seveso”, purtroppo mai tradotto dal tedesco; nell’articolo Sambeth trae le lezioni strategiche da Seveso le stesse che ha esposto più ampiamente nel libro. Zwischenfall significa si incidente, ma nel senso proprio di contrattempo, seccatura, inconveniente che ti fa perdere tempo.

Ma anche per chi non conosce il tedesco e non può leggere il testo c’è una intervista rivelatrice in italiano che trovate qui.

Dottor Sambeth, perché ha preso la decisione di raccontare l’incidente con un libro.
«Innanzitutto – spiega – per ragioni personali: io ho voluto tirare fuori tutto dalla mia coscienza, come in un confessionale. L’incidente ha coinvolto tanta gente che ha sofferto. In secondo luogo, volevo dire alla mia famiglia e ai miei amici che cosa realmente è accaduto. C’è una terza ragione: raccontare alla gente, e soprattutto ai giovani, in che situazione mi ero trovato e che cosa non bisogna fare. Infine – sorride – c’è un quarto motivo: ho sempre voluto scrivere un libro. Avevo bisogno di una trama, e qual è una trama migliore di quella di Seveso?»

Quando visitò per la prima volta lo stabilimento di Seveso.
«Nel giugno del 1970. Ed ebbi subito l’impressione che sullo stabilimento non era stato investito abbastanza. Il reattore per il triclorofenolo, quello che poi sarebbe scoppiato, era abbastanza moderno. Una macchina non elegante, ma non così mal messa come il resto dello stabilimento, che era un disastro».
Intanto, però, si produceva triclorofenolo.
«La produzione era in corso da tempo ma la Roche non aveva ancora fatto nessuna ricerca documentaria sui possibili rischi e sugli incidenti precedenti. L’intero progetto per la produzione di triclorofenolo era sbagliato, non appoggiava sulla ricerca. La Roche non mi aveva detto niente, non so se per negligenza, stupidità o presunzione». «Il reattore era pronto ad esplodere Tutti sapevano, ma decisero di tacere»

Il rischio che la produzione di triclorofenolo potesse portare alla sintesi di diossina era noto da tempo, ma alla Givaudan non c’era alcun piano. Questo ribadisce Jorge Sambeth, l’ex direttore tecnico della Givaudan
«Nel 1971 – spiega – fummo un mio collaboratore ed io a leggere su Nature dell’incidente in Inghilterra durante il quale venne prodotta diossina a una temperatura di circa 230 gradi. E subito mandai all’Icmesa una copia di quel testo, con una disposizione precisa: mai superare i 170°. Di quella lettera c’è anche copia, è stato uno dei miei documenti di difesa più importanti».
Come controllavate la temperatura del reattore di Seveso?
«Con un impianto esterno di raffreddamento ad acqua. O, al limite, immettendo nel reattore acqua fredda da una cisterna di 3 mila litri. Con l’acqua la reazione non poteva continuare. Era assolutamente normale che, talvolta, la temperatura si alzasse di qualche grado sopra i 170. Negli anni prima dell’incidente era successo due o tre volte, ma la situazione rimase sempre sotto assoluto controllo proprio grazie all’immissione di acqua».
Non c’erano tuttavia strumenti automatici di controllo della temperatura e della pressione.
«No, non erano previsti perché il personale era per tutto il tempo lì davanti a controllare il processo».
L’Italia, allora, era considerata in Svizzera come un paese da Terzo Mondo?
«Assolutamente sì. Se c’erano ispezioni, si poteva dire: stiamo facendo, stiamo facendo. L’anno prossimo, l’anno prossimo. Si ammodernavano tutti gli impianti del mondo, quello italiano no. Questo non lo voglio negare».

Nel bene e nel male anche se solo un morto (ma decine di casi di cloracne migliaia di abbattimenti di animali e centinaia di miliardi di lire di allora di danni e spese per eliminare il terreno contaminato) fu effettivamente provocato dall’incidente, Seveso ha segnato le leggi e le persone; se oggi abbiamo una legislazione ambientale EUROPEA come quella che abbiamo lo dobbiamo all’evento Seveso. REACH ne è una conseguenza logica. Alcuni di quei miliardi furono usati per mantenere verifiche su ambiente e persone, perchè (nonostante tutto il bene che se ne possa dire) le diossine sono uno dei 12 POPs, ossia gli inquinanti ambientali persistenti banditi o controllati a livello mondiale.

Ultimo (ma non ultimo come qualità ed efficacia) ricordo il numero speciale di Sapere dedicato a Seveso e alle sue lezioni:

Eppure; eppure come la Roche svizzera considerava la Lombardia del 1976 “terzo mondo”, c’era un mondo che l’industria chimica italiana considerava “terzo mondo”: il sud dell’Italia.

L’incidente di Seveso avvenne il 10 luglio 1976; io mi ero laureato due mesi prima; il giorno dopo la laurea con alcuni amici carissimi (Cesare Fournier, Eugenio Chiaravalle, Enzo Santagada e quella che sarebbe diventata mia moglie Rita Cosentino) tutti giovani chimici, ci recammo in Puglia a cercare lavoro; la Puglia era la terra della campagna saccarifera che iniziava proprio allora, ma era anche una delle regioni del Sud che più stava cercando di riscattarsi da una atavica povertà e costruire una industria moderna. Quella volta andò buca e la vulgata è che ci scappò il soprannome di uno di noi (“Lenin”) giusto durante le presentazioni; ciò mise in sospetto l’incaricato delle assunzioni e fummo fregati; ma forse è una cattiveria.

Dopo qualche mese, 29 settembre, avvenne proprio in Puglia a Manfredonia un incidente chimico gravissimo.

Sul tema è difficile trovare notizie certe e assodate; c’è un libro in italiano, ma praticamente introvabile se non in biblioteca: I fantasmi dell’Enichem, Giulio Di Luzio, Ed Baldini Castoldi Dalai, 2003. C’è una tesi di Francesco Tomaiuolo (2005), ma si può scaricare solo a pagamento (che poi siano a pagamento le tesi degli studenti italiani fatte in università italiane è veramente un mistero per me: chi incamera i soldi pagati per le consultazioni su siti privati? Bah); ci sono parecchi articoli giornalistici che si trovano pubblicamente.

Fra gli altri segnalo l’articolo pubblicato qualche anno (2002) dopo su C&I (non ho l’elenco articoli pubblicato fra 1976 e 2000 su C&I): http://www.soc.chim.it/sites/default/files/chimind/pdf/2002_2_10_ca.pdf autore Mario Ghezzi; tuttavia su questo articolo, certamente ben basato dal punto di vista chimico, avanzo delle perplessità sull’approccio sociale e della salute. Interessante notare come la data dell’incidente nell’articolo citata più e più volte sia sbagliata (1984, 1974, ma in realtà l’incidente avvenne nel 1976 e questa trascuratezza è essa stessa una informazione, testimonia di quell’atmosfera che Sambeth chiama in tedesco Zwischenfall, contrattempo, seccatura, incidenti-seccatura per i proprietari e gli industriali chimici e forse anche per alcuni chimici industriali).

Bruno Zevi in un articolo apparso su «L’Espresso» del 3 dicembre 1967 dal titolo L’ENI a Manfredonia: una ghigliottina per il Gargano scrisse che quella scelta industriale fu un “atto masochistico”.

L’impianto Enichem è stato costruito alla fine degli anni ’60 nel comune di Monte sant’Angelo, a 1 km da Manfredonia. L’Anic, Azienda Nazionale Idrogenazione Combustibili, è stata l’azienda petrolchimica dell’ENI che fino al 1983 ha gestito le produzioni petrolchimiche del gruppo fino a confluire nell’EniChem e successivamente nel 2000 essere trasformata in Syndial. La scelta del posto, il litorale nei pressi di una città che viveva di pesca e agricoltura (facente parte del bacino elettorale di un politico di maggioranza e dirigente dell’ENI) è stata criticata per i rischi ambientali;( http://atlanteitaliano.cdca.it/conflitto/petrolchimico-enichem-di-manfredonia)

Su quei 160 ettari affacciati direttamente sul mare sorsero nel giro di qualche anno gli impianti per la produzione di urea e ammoniaca dell’ANIC e per la produzione altamente tossica di caprolattame della SCD (Società Chimica Dauna). La produzione fu avviata nel 1971,( http://www2.issm.cnr.it/demetrapdf/boll_12_2006/Pagine da demetra_imp 12_tomaiuolo.pdf)

In effetti già il 15 luglio 1972 ci fu una violenta alluvione e l’impianto rimase senza corrente non avendo un impianto elettrogeno; questo fece correre il rischio di malfunzionamento o perfino di esplosione (come a Seveso interrompere bruscamente una reazione chimica non è consigliabile); la commissione ministeriale formata dopo l’alluvione sottolineò che l’impianto era in una zona a rischio idrogeologico.

Comunque il ricatto lavoro-salute-ambiente è vecchio e forte. La fabbrica rimase dov’era.

Interessante notare quanto scrive Ghezzi sull’aspetto tecnico della fabbrica, che in certo senso ricorda le frasi di Sambeth su Seveso:

“l’ing. Gianmarco, veneziano e direttore della fabbrica Vetrocoke Azotati di Marghera, installata dalla Fiat e ceduta a Montecatini nel 1962, sviluppò negli anni Cinquanta un processo di abbattimento di anidride carbonica che impiegava una soluzione contenente sali assorbenti-desorbenti, per reazioni successive, di arsenico, più tardi sostituito da vanadio. Purtroppo detto processo non ebbe molta fortuna, risultò di difficile messa a punto a Marghera e causò gravi perdite di arsenico nei canali industriali di Marghera, che sono state oggi accertate e sono in via di bonifica. Non si capisce pertanto per quali motivi Anic negli anni Sessanta abbia commesso l’errore di impiegare nel progetto ammoniaca di Manfredonia il processo Gianmarco, visto che il mercato offriva processi migliori per il recupero di anidride carbonica da impiegare nel vicino impianto urea e che il suo impianto di Ravenna utilizzava il vecchio e collaudato lavaggio ad acqua: si è trattato probabilmente di un tentativo di aggiornamento tecnologico andato a male.”

Io un’idea la avrei, suggerita dalla lettura di Sambeth: forse perchè era meno costoso? Forse perchè nessuno avrebbe nel Sud affamato di lavoro di quegli anni protestato o controllato pur di avere un impianto sia pur vecchio o malposizionato: lavoro, lavoro, lavoro! Non si può vivere di bellezza. (O forse si?)

Racconta Tomaiuolo:

Il 26 settembre del 1976, poco prima delle 10 del mattino, un boato scosse la città, sulla quale si abbatté subito dopo una nube tossica dalla quale cominciò a cadere una fanghiglia giallastra molto leggera, che nel quartiere Monticchio – il più vicino allo stabilimento – in breve coprì ogni cosa. I bambini presero a giocare con quella che credevano neve fuori stagione. Nello stabilimento – specificamente nell’impianto per la produzione di ammoniaca – era scoppiata la colonna di lavaggio dell’anidride carbonica sprigionando nell’atmosfera decine di tonnellate di arsenico. Per fortuna l’incidente avvenne di domenica, quando erano presenti solo una ventina di operai in fabbrica. Ma la fortuna divenne disgrazia allorché i dirigenti dello stabilimento decisero di minimizzare l’accaduto consentendo agli oltre 1800 lavoratori di entrare normalmente in fabbrica l’indomani mattina. Quegli operai vennero contaminati da massicce dosi di arsenico e tra loro molti vennero adibiti a spazzare il pericoloso veleno a mani nude. Gli intossicati furono centinaia. Nelle campagne vicine allo stabilimento si assistette alla morte di migliaia di animali da cortile e anche in città si verificarono numerosi casi di intossicazione. Dell’incidente, che seguiva di pochi mesi quello di Seveso, se ne occuparono presto i giornali nazionali ed esteri. Fu inviato l’esercito a presidiare le aree contaminate mentre negli ospedali si eseguivano accertamenti clinici sommari sulla popolazione e sugli operai. Intanto venne costituita una commissione tecnico-scientifica per il disinquinamento, che decise di sottoporre i terreni contaminati a lavaggio con ipoclorito di calce e solfato di ferro, per ottenere l’ossidazione e l’insolubilizzazione dell’arsenico, evitando così che percolasse nella falda e quindi in mare. Le operazioni durarono poche settimane. La Procura aprì un’inchiesta che non arrivò mai neanche alla fase dibattimentale, poiché all’epoca era ancora troppo difficile stabilire un nesso di causalità tra esposizione ad arsenico e malattie tumorali.

L’arsenico, entrato ormai nella catena alimentare della popolazione di Manfredonia, ricominciò a far parlare di sé solo alcuni decenni più tardi, quando l’Organizzazione Mondiale della Sanità, effettuando uno studio di mortalità sulla popolazione nel periodo 1980-87, rilevò eccessi di tumori dello stomaco, della prostata e della vescica tra i maschi e della laringe, della pleura nonché di mieloma multiplo tra le donne. Così Manfredonia fu dichiarata area ad alto rischio cancerogeno e venne chiesta l’istituzione di un osservatorio epidemiologico permanente.

Lo stabilimento venne chiuso nel 1993; interessante il retroscena raccontato sempre da Tomaiuolo:

un procedimento giudiziario avviato nel 1988 dal pretore di Otranto portò al sequestro di due navi che l’Enichem utilizzava per il trasporto dei sali sodici – rifiuti tossici derivanti dalla produzione di caprolattame – che avrebbe dovuto scaricare nel Mar Libico. Il sequestro avvenne perché si accertò che lo scarico veniva abusivamente effettuato nel canale d’Otranto, provocando morie continue di pesci e delfini. L’azienda così, non potendo più smaltire gli scarti di lavorazione del caprolattame, che ammontavano a 198.615 tonnellate annue, decise la chiusura dell’impianto. L’economicità di gestione dell’intero sito industriale venne così a ridursi drasticamente e, in seguito al blocco europeo degli aiuti di stato all’Enichem, la società chiuse nel 1993 anche gli impianti per la produzione di ammoniaca.

Ora Ghezzi ha scritto che l’incidente di Manfredonia “non provocò alcun decesso, salvo quello della fabbrica e del contiguo stabilimento della Daunia”; rimane difficile credere che una ricaduta di materiale contenente arsenico per varie tonnellate (almeno 10) su una popolosa zona abitata non abbia avuto conseguenze mortali.

E’ pur vero che l’articolo di Ghezzi non era solo nell’approccio minimizzante: nel 1982 la rivista italiana “Medicina del Lavoro” ha negato ogni effetto sanitario sui lavoratori, sostenendo la tesi che l’arsenico elevato dipendesse dall’assunzione alimentare di crostacei.

Varie osservazioni. Già 30 anni fa l’Agenzia internazionale per la ricerca sul cancro (IARC) ha valutato l’arsenico (As) e i composti arsenicali come cancerogeni per l’uomo e ha considerato nel 2004 la cancerogenicità certa dell’arsenico in acqua per uso umano

I livelli di arsenico rilevati nelle urine dei soggetti esposti a Manfredonia erano altissimi ben superiori a qualunque limite poi stabilito; attualmente (dopo il 2001) il limite dell’As nelle acque potabili è di 10ppb (10mg/litro o 10gamma/litro); era di 50 nel 1988; ora si consideri che nei lavoratori esposti dell’Enichem le analisi effettuate dalla Medicina del Lavoro di Bari rilevano concentrazioni di arsenico nelle urine degli operai comprese tra 2000 e 5000 gamma/litro, contro un limite di tollerabilità fissato in 100 gamma/litro e che all’ inizio del 1977, su proposta del prof. Ambrosi, viene innalzato prima a 300 e poi a 800 gamma/litro il limite di arsenico nelle urine degli operai oltre il quale scatta la messa a riposo (un pò come nel caso atrazina!!); non v’è dunque dubbio alcuno che i lavoratori esposti potessero essere soggetti all’azione tumorale dell’As; la stima dei morti per effetto diretto portata in giudizio fu di 17.

Il 4 marzo riprende la produzione di caprolattame, seguita da quella di fertilizzanti nell’autunno seguente, dopo la sostituzione della colonna esplosa. Il 60 % della produzione agricola e il 30 % di quella zootecnica viene distrutta. I braccianti hanno perso giornate lavorative, mentre il pesce del golfo per intere settimane è stato respinto dai mercati. Alcuni paesi europei hanno minacciato di non ritirare più glutammato monosodico prodotto dall’ Ajinomoto di Manfredonia, e uno di essi ha preteso che i carichi fossero accompagnati da certificati (M. Apollonio, Diecimila in corteo a Manfredonia. La Gazzetta del Mezzogiorno, 18 ottobre 1976)

Negli anni seguenti ci furono rinnovate proteste e anche un processo partito per iniziativa di un operaio, Nicola Lovecchio, poi morto di tumore, che si è chiuso solo nel 2011 senza condanna dell’Enichem. A Lovecchio è dedicato il libro di Di Luzio.

Nel 1995 il Dott. Maurizio Portaluri, radioncologo dell’ospedale San Giovanni Rotondo e attivista di Medicina Democratica, assieme all’ex operaio Nicola Lovecchio ha effettuato un’indagine epidemiologica dal basso, mostrando un eccesso di tumori per i lavoratori e denunciando venti anni di violazioni dei loro diritti. Ne è seguito un processo penale contro dodici persone in cui sono stati coinvolti centinaia di operai, numerose associazioni, il comitato di donne Bianca Lancia, il comune di Manfredonia (poi ritiratosi) e lo Stato Italiano. Durante il processo l’Enichem ha offerto soldi in cambio del ritiro delle parti civili. Il processo è finito nel 2011 con l’assoluzione totale dell’Enichem nonostante che anche le relazioni dell’ISS (Istituto Superiore di Sanità) e della stessa OMS (Organizzazione Mondiale della Sanità) riconoscessero nell’incidente del 1976 la causa dei tumori degli operai. Il comitato Bianca Lancia nel 1998 ha ottenuto una sentenza favorevole della Corte Europea dei Diritti dell’Uomo, ma solo per “danni morali” dovuti alla mancanza di trasparenza nella gestione della fabbrica. Non c’è stato alcun riconoscimento del disastro ambientale. Dallo stesso anno Manfredonia è Sito di Interesse Nazionale per le bonifiche (CDCA).

Alla fine la Corte di Cassazione ha decretato l’inammissibilità del ricorso presentato dalla Procura di Bari che invece riteneva i vari dirigenti ENICHEM e medici del lavoro responsabili.

A differenza di Seveso, Manfredonia è rimasta senza colpevoli.

Una cosa che noto di passaggio; i lavori di bonifica del sito abbandonato dalla Enichem sono adesso condotti dalla Syndial, filiazione dell’ENI; la domanda è chi paga i lavori di bonifica per le sporcizie immesse in ambiente da Enichem? Noi o loro?

Ci sono due versi di canzoni della mia gioventù che mi risuonano in questo momento nelle orecchie, una è quella del pugliese Domenico Modugno

Sole alla valle, sole alla collina,
per le campagne non c’è più nessuno.
Addio, addio amore, io vado via

amara terra mia, amara e bella.

E gli risponde quella di Paolo Pietrangeli che risuonava per le strade del 68:

“Che roba Contessa all’industria di Aldo
han fatto uno sciopero quei quattro ignoranti
volevano avere i salari aumentati
gridavano, pensi, di essere sfruttati
e quando è arrivata la polizia
quei quattro straccioni han gridato più forte
di sangue han sporcato il cortile e le porte
chissà quanto tempo ci vorrà per pulire.”

documentazione: http://www.musilbrescia.it/minisiti/la_chimica_in_italia/contenuti/le_industrie_in_italia-casi_di_studio/7.Industria_e_ambiente_Il_caso_Seveso_Leoci_Nebbia_Notarnicola.pdf

Qualcuno può aiutarmi a spiegare un fenomeno?

In evidenza

Maurizio D’Auria*

Da qualche tempo sto cercando di ricostruire le vicende che hanno permesso la nascita e la sedimentazione nella cultura scientifica italiana degli studi in ambito fotochimico. In questo ambito per molto tempo si è pensato che lo scoppio della I Guerra Mondiale sia coinciso con un periodo di lungo oblio della disciplina. Questo convincimento si è probabilmente diffuso per il fatto che Ciamician a Bologna dopo il 1914 non pubblicherà più nulla in termini di ricerche sperimentali in ambito fotochimico, e che anche Paternò a Roma sostanzialmente fece la stessa cosa.

Abbiamo altrove cercato di dimostrare che questo non è stato proprio vero. Allievi di Ciamician e di Paternò continuarono a sviluppare la disciplina, talvolta ottenendo anche risultati molto interessanti. Maurizio Padoa a Bologna tentò, per esempio, nel 1911 di effettuare una sintesi asimmetrica utilizzando luce circolarmente polarizzata. La reazione studiata da Padoa (Gazz. Chim. Ital. 1911, 41(I),469) fu la bromurazione dell’acido angelico e, ovviamente, non ebbe successo. L’insuccesso era dovuto al fatto che la luce interveniva nel processo solo per generare l’atomo di bromo per scissione omolitica del bromo, ma poi non aveva nessun ruolo nella successiva addizione di bromo all’acido angelico.

acido angelico

Fin qui nulla di strano quindi. Qualche giorno fa mi imbatto, però, in un articolo che mi ha messo in difficoltà. Mario Betti , successore di Ciamician sulla cattedra di Chimica Generale dell’Università di Bologna, nel 1942, pubblica una nota sui Rendiconti dell’Accademia delle Scienze dell’Istituto di Bologna (vol IX, pp. 203-214). In questo articolo viene descritta l’addizione di cloro (quindi sostanzialmente la stessa reazione esaminata da Padoa) al doppio legame del propene in fase gassosa sotto l’azione di luce polarizzata. Il processo è formalmente identico a quello visto precedentemente e quindi non c’era ragioni di attendersi una qualche catalisi asimmetrica. Invece, Betti dichiara di trovare una certa asimmetria. Arriva a determinare valori di a fino a 0.22. Se consideriamo che il (-)-1,2-dicloropropano liquido mostra una rotazione ottica di -4.33, il risultato indica una relativamente buona (ottima per l’epoca) induzione asimmetrica.

propene

Ma come si spiega tutto ciò? qualcuno è in grado di spiegarmi come è possibile che in questo caso si osservi una reazione chirale mentre nel caso precedente no?

*http://cla.unibas.it/contents/instance3/files/document/1001004D’Auria.pdf