Informazioni su devoldev

chemist, university researcher, marxian, peakoiler,climate worried, bridge player, Mozart/Vivaldi loving, pedal biker

Lo strano caso della chiesa di S. Lamberto e della foresta di Hambach.

In evidenza

Claudio Della Volpe

Mentre prosegue l’incontro di Katowice, COP24, voglio raccontarvi una storia esemplare delle contraddizioni in cui si trova la transizione energetica in Europa e in particolare in quella Germania che rappresenta una sorta di “paese guida” europeo; vedremo fra un momento che questo ruolo di guida nasconde in realtà parecchia polvere sotto il tappeto. Tutti i commentatori si sono dilungati sulle contraddizioni polacche, Katowice è a pochi chilometri da grandi miniere di carbone e la Polonia non intende rinunciarvi. Katowice è la capitale del carbone. Ma la Germania è un esempio ancora migliore.

I due luoghi di cui parlo oggi sono nella Renania, la zona occidentale della Germania al confine con Olanda, Belgio, Lussemburgo e Francia; a nord abbiamo la Renania Settentrionale-Westfalia (Nordrhein-Westfalen), capoluogo Dusseldorf e a sud la Renania Palatinato (Rheinland-Pfalz), capoluogo Magonza, entrambe, insieme alla Saar (Saarland), costituiscono un bacino minerario storico della Germania.Questa regione occidentale è ricca di carbone sia di tipo antracitico che lignitico, che si è formato nel corso di decine di milioni di anni dalla degradazione più o meno completa di enormi foreste che ricoprivano la zona. Non è l’unica regione della Germania con questa risorsa, ma è quella con il più alto tasso di lignite. La lignite (alta umidità relativa superiore al 21%, incompleta carbonificazione) è di limitato pregio perché è meno energetica per unità di massa e dunque più marcata fonte di inquinamento ambientale ma anche climatico rispetto ad altri tipi di carbone.

Si presenta con colore da bruno a nero, tanto da essere chiamata carbone bruno; ha un potere calorifico superiore (PCS, senza escludere l’energia di evaporazione dell’acqua) inferiore a 24 MJ/kg (5.700 kcal/kg) , considerando la sostanza senza ceneri (contro una media di 35 dell’antracite e di 42 del petrolio).

La Germania è ad oggi la principale produttrice mondiale di lignite, uno dei principali esportatori ma soprattutto utilizzatori di questo combustibile fossile da cui ricava buona parte della propria elettricità; soprattutto da quando nel 2011, dopo l’incidente di Fukushima ha deciso di spegnere le centrali nucleari entro il 2030. Dunque la verde Germania, con la più alta quantità di rinnovabili al mondo conserva un segreto, tutto sommato ben custodito, nel fatto che mentre chiudeva le sue centrali nucleari le sostituiva con un buon numero di centrali a carbone, che costituiscono oggi la sua “base produttiva” elettrica con quasi 300TWh anno, una quantità pari al consumo totale italiano di energia elettrica.

Se si guardano i numeri sul sito della AGEB, si vede che effettivamente la Germania dal 1995 pur avendo diminuito l’uso del nucleare, dell’antracite… e del gas naturale, e pur avendo certamente incrementato l’efficienza complessiva delle sue centrali ed ovviamente pur avendo incrementato di parecchio l’uso delle rinnovabili, che coprono una parte significativa del consumo, ha incrementato l’uso della lignite. Anzi la lignite è stata uno dei mezzi per uscire dalla crisi del 2008. Nonostante l’impetuosa crescita delle rinnovabili, il paese non raggiungerà il taglio previsto delle emissioni al 2020 per parecchi punti di scarto.

Questa scelta è solo economica dato che si tratta di una risorsa interna e a basso costo per lo meno economico, ma come vedremo con alti costi ambientali; si sarebbe potuto fare diversamente, incrementando ulteriormente le rinnovabili, si sarebbero potute usare centrali a gas che invece sono state chiuse o anche basandosi, come fa l’Italia, sulla produzione in eccesso di altri paesi che volentieri vendono la loro energia elettrica in quanto i loro impianti nucleari (o idroelettrici ) DEVONO liberarsi dell’eccesso di produzione anche senza mercato interno. In quasi tutta Europa questi impianti sono in eccesso rispetto al fabbisogno, immani cattedrali di capitale fisso che se rimangono prive di remunerazione si mascherano dietro i pochi posti di lavoro supportati e urlano la loro fame di profitto ogni giorno. Non potete regolare la produzione di una centrale nucleare, dovete tirarla sempre al massimo, un sistema rigidissimo; ed è da dire che anche le centrali a carbone sono parecchio rigide da questo punto di vista, al contrario di quelle a gas, sono adatte solo a far da “base” e sono state usate così dai tedeschi.

I due casi a cui facevo riferimento all’inizio sono proprio questo, il costo ambientale e culturale della lignite; la foresta di Hambach che vedete qui sotto è meno di un decimo (200 ettari) della foresta originale ricca di alberi secolari e al cui confine si apre la più grande miniera a cielo aperto di lignite di tutta Europa, denominata anch’essa Hambach (a sinistra nella foto).Notate nella parte inferiore della foto lo scavo ripidissimo. La collina artificiale che vedete, che si viene a creare a causa dell’estesa coltivazione superficiale della miniera, Sophienhöhe, 6 km ad est della città Julich all’estremità NE della miniera è la più alta d’Europa, 293 metri sul livello del mare ma anche quasi 600m sopra il punto più basso degli scavi, che a loro volta costituiscono il punto più basso del territorio europeo, con quasi 300m di dislivello negativo.

Durante quest’anno è venuta a compimento una lotta fra gli ambientalisti radicali tedeschi e la RWE, la compagnia che estrae la lignite; grazie alla dura opposizione esercitata dagli ambientalisti anarchici che hanno dormito sugli alberi per settimane e grazie anche alle vittime che ci sono state durante questo periodo (il giornalista Steffen Meyns, che si era arrampicato per seguire l’operazione, era morto cadendo da una passerella tra due alberi), l’abbattimento della foresta che era stato programmato è stato interrotto dalla magistratura anche se la lotta in tribunale continuerà per altri anni.L’altro episodio analogo ha avuto conclusione opposta e costituisce l’altra faccia della medaglia. La chiesa di S. Lamberto, localmente nota come Immerather Dom, che vedete sotto, era un esempio di stile neoromanico situata a Immerath, una frazione di Erkelenz. Risalente al XII secolo nella sua forma originaria ed ampliata in anni successivi, è stata abbattuta a gennaio 2018, seguendo il destino del resto della cittadina, per far posto ad una miniera di lignite di proprietà della solita RWE.Ma pensate che l’intera cittadina di Immerath si trovava sul percorso previsto per l’estensione della miniera di Garzweiler, il sito di estrazione di lignite operato dalla società tedesca RWE; già nei primi anni 2010 la società aveva demolito e ricostruito gran parte degli edifici di Immerath su un nuovo sito, incluso il cimitero (esumando e trasferendo i corpi già sepolti).La chiesa stessa è stata ricostruita altrove in forma moderna. Stavolta non ci sono stati conflitti duri (oltre la resistenza pacifica dei verdi) ma pagamenti, scambi economici e poi silenzio contro devastazioni ambientali.Potreste dire che forse per una vecchia chiesa non vale la pena di far baccano; ma guardiamo le cose più da vicino.Panoramica della miniera di Garzweiler. Sullo sfondo le centrali termiche che utilizzano la lignite estratta. Da http://www.mining-technology.com/projects/rhineland/

Un buco gigantesco di dimensioni analoghe a quelle di Hambach con una serie non banale di effetti collaterali; infatti lo scavo altera in modo irrimediabile la falda acquifera.

100 milioni di tonnellate di lignite vengono estratte dalle varie miniere della zona e, per tale produzione, vengono rimossi e spostati annualmente circa 450 milioni di metri cubi di argille, sabbie e conglomerati sovrastanti lo strato di lignite (nell’area infatti si individuano facilmente significative colline artificiali).

Lo strato di lignite si trova a varie profondità e per estrarlo occorre quindi abbassare la falda acquifera (in termini tecnici tale operazione è chiamata dewatering). In tutta l’area, sono quindi in azione giganteschi e sofisticati sistemi di pompaggio in grado di estrarre annualmente enormi quantità di acqua di falda senza compromettere, stando ai dati ufficiali, il fabbisogno idrico delle comunità ubicate nelle vicinanze delle cave.

Così come descritti, ad un lettore possono sembrare dati un po’ freddi ma, se confrontiamo le superfici utilizzate,credo che risulti chiara la situazione esistente. A tale scopo sono state messe a confronto solo le  superfici di scavo delle tre miniere con quelle  di Roma e Milano.Immagini riprese da Google maps alla stessa scala. Le tre miniere sono al centro. Inden la più piccola, Hambach la più grande e Garzweiler quella più in alto. A destra in alto il comune di Milano ed  a sinistra l’estensione di Roma all’interno del Grande Raccordo Anulare (GRA).

La figura ci dice che l’area oggetto di scavo ( da assommare poi a quella utilizzata per lo stoccaggio dei sedimenti che ricoprono lo strato di lignite) è più grande di quella del comune di Milano e grande come l’area di  Roma all’interno del GRA. A questo si deve aggiungere che l’attività estrattiva ha comportato la distruzione di villaggi e la loro ricollocazione in altre aree; dal 1948 sono state spostate circa 30.000 persone.

da http://astrolabio.amicidellaterra.it/node/526

Ecco questi sono gli effetti nella verde Germania (che è certamente dotata del più ampio apparato fotovoltaico europeo) delle contraddizioni della transizione energetica. A voi ogni ulteriore commento.In questa vignetta i cicloamatori tedeschi fanno dire alla Merkel: Oh, dite che le bici sono fatte dal carbone? Grande opportunità per l’estrazione mineraria!

da https://www.roadbike.de/news/angela-merkel-und-das-fahrrad-was-die-kanzerlin-auf-der-eurobike-nicht-gesagt-hat.865692.9.htm#1

per approfondire

http://dataenergia.altervista.org/portale/?q=consumo_produzione_energia_elettrica_germania

https://gloria.tv/article/Ca4PVUKybkpK1tJoqVkNfZN6D

Scienza e politica, un aggiornamento.

In evidenza

Claudio Della Volpe

Personalmente sono stato sempre politicamente impegnato; ma negli ultimi anni è cambiato qualcosa. Prima sembrava che tutto sommato l’essere impegnati politicamente fosse un di più rispetto alla scienza o forse una sorta di noblesse oblige. Dopo tutto fra scienza e politica non c’erano, non sembravano esserci (ad una riflessione superficiale) legami immediati.

Non era così, ma sembrava.

Adesso non sembra nemmeno più così, adesso è palese che molti temi scientifici siano immediatamente politici: ambiente, clima, risorse, vaccini, inquinamento, etc. Non c’è più spazio per essere e rimanere in una torre d’avorio, come tradizione dell’intellettuale.

Che uno scienziato debba essere politicamente impegnato non tutti sono d’accordo; anzi. Qualcuno sostiene che proprio perchè si è scienziati occorra rimanere neutri nell’agone politico per non sembrare “di parte”. La questione è che non è detto che la scienza non sia o debba essere “di parte”.

Capisco di sembrare politicamente scorretto, ma forse è perchè non ci capiamo. Riprovo.

Non tutti sanno che molti dei nomi più famosi della chimica nazionale ed internazionale erano impegnati politicamente tanto da essere perseguiti dai politici dell’epoca. In un articolo che scrissi su C&I nel 2011 (C&I ottobre 2011 p.144-145) ricordavo alcuni di questi nomi: Avogadro e Cannizzaro per esempio ma anche Errera e Giua, Levi, alcuni definiti terroristi dalle leggi della loro epoca; oppure quelli meno conosciuti e rivendicati che abbiamo elencato in un articolo sul 25 aprile su questo stesso blog (Lepetit, Mattei, Kaminka, Ceva, Reinach).

Erano tanti, tantissimi.

Uno di costoro scriveva:A livello internazionale ricordo un nome fra tutti, Soddy, premio Nobel nel 1921 per la scoperta degli isotopi; come ricordava Giorgio Nebbia in un articolo su questo blog

Soddy ottenne la cattedra di chimica a Oxford nel 1919, ma nel mondo accademico fu sempre considerato “strano” per le sue incursioni in campi non strettamente chimici. Soddy si mise in pensione anticipatamente nel 1936, dopo la morte dell’amata moglie, e morì nel 1956 a 79 anni, amareggiato per la poca attenzione ricevuta dai suoi studi. Una attenta lettura dei suoi scritti (pochi tradotti in italiano) permette invece di riconoscerlo come un precursore dell’analisi dei problemi ambientali attuali, come ha messo in evidenza lo storico Martinez-Alier nel suo libro “Economia ecologica”. Per questo, oltre che per la sua scoperta degli isotopi, Soddy meriterebbe di essere meglio conosciuto e studiato se si vuole capire qualcosa di quanto ci sta aspettando.”

La situazione è cambiata in tempi recenti. Sappiamo che 18 premi Nobel (fra i quali 5 chimici) hanno pubblicamente affermato la necessità di cambiare direzione nel campo dell’uso di energia e materiali (https://en.wikipedia.org/wiki/Stockholm_Memorandum), argomento fortemente ribadito da molti colleghi italiani in tempi recenti: Tiezzi, Dondi, Guido Barone, e più di recente Balzani, Armaroli, Luca Pardi, Ugo Bardi, tutti chimici e tutti fortemente schierati per un profondo cambiamento nel nostro modo di vivere e gestire il rapporto fra noi e la Natura e fra noi stessi.

( si vedano anche miei articoli del 2011 su C&I: C&I luglio agosto 2011, p. 138 e C&I sett. 2011 p.150)

Ora la questione è che per fare tutto ciò ci vuole una decisa azione Politica (con P maiuscola) e dunque una intensa partecipazione alla vita politica dei paesi.

In effetti alcuni eventi recenti vanno in questa direzione.

In USA, come apprendiamo da Nature e Scientific American le ultime elezioni hanno visto una intensa partecipazione alle elezioni di scienziati apertamente schierati contro i passi indietro e gli attacchi alla scienza della amministrazione Trump (Nature nov. 2018: Science candidates prevail in US midterm elections ).

E in Italia quale è la situazione? Quanti chimici partecipano alla vita politica del paese?

Se andiamo a guardare l’ultima legislatura, la XVIII troviamo in parlamento 8 chimici (fra chimici, chimici CTF, ingegneri chimici) che sono i seguenti:

XVIII legislatura

221 laureati su 320 senatori

436 laureati su 630 deputati

totale 657 laureati su 950 eletti (oltre due terzi)

8 Parlamentari laureati in Chimica, CTF o ing. Chimica 1.2% dei laureati eletti (spero di non aver dimenticato nessuno se no segnalatemelo)

(noto di passaggio che nella popolazione generale 60.5 milioni di cui 6 milioni laureati ci sono circa 100.000 chimici (stima mia) dunque fra 1 e 2%)

Tutti eletti M5S eccetto Benamati e Patriarca, eletti col PD.

Marco Bella chimico, PhD, M5S (ha una rubrica su Il Fatto quotidiano)

Sara Cunial chimico industriale, M5S

Francesco D’Uva – chimico, M5S

Gianluca Benamati – chimico, PD

Alessandro Melicchio CTF, PhD, M5S

Caterina Licatini CTF e Laurea in tecniche della prevenzione nell’ambiente e nei luoghi di lavoro, M5S

Filippo Scerra, ing. Chimico, M5S

Edoardo Patriarca, PD, senato, chimico

Vedremo cosa faranno i chimici in questa legislatura, perchè di cose da fare ce ne sono tante a partire dall’impegno del nostro paese contro i cambiamenti climatici, che è in discussione in questi giorni in Polonia al COP24 di Katowice, dove occorrerà mettere nero su bianco quali impegni si prendono per mantenere l’aumento di temperatura media sotto il grado e mezzo.

Cos’è lo strano oggetto al centro del logo dell’American Chemical Society?

In evidenza

Roberto Poeti

Al centro del logo della Società Chimica Americana, sotto l’aquila, c’è uno strano oggetto fatto da cinque palline unite tra loro. Ma cosa rappresenta? E perché è così importante da essere inserito nel logo di una delle più prestigiose e antiche Società Chimiche ? ( La sua fondazione è del 1876 )

Ancora più sorprendente è la scoperta che nella parete dello Sterling Chemistry Laboratory ( 1923 ) dell’università di Yale (USA) è inserita l’immagine in pietra dello stesso oggetto .

Chi ha avuto l’idea di inserirlo nel logo della ACS? La Società Americana di Chimica venne fondata nel 1876 da trentacinque chimici riuniti a New York City. J. L. Smith, uno dei fondatori, suggerì di inserire nel logo della Società il nostro oggetto. Ma dove aveva visto e soprattutto usato questo oggetto? J. L. Smith era stato, come molti altri chimici europei e americani, nel laboratorio di Justus von Liebig a Giessen in Germania, come studente, nel 1842 per apprendere le tecniche di laboratorio, in particolare la tecnica per l’analisi elementare delle sostanze organiche .

Visitiamo il laboratorio nell’Istituto di Chimica di Liebig

E’ uno dei laboratori dell’800 che si sono meglio conservati fino ad oggi. Oggi è un museo di chimica tra i più interessanti al mondo. Vale proprio la pena di visitarlo .

La sede dell’Istituto di Chimica di Liebig a Giessen in Germania . Venne ricavato da una caserma militare nel 1819 . Nel 1825 Liebig sostituì il Prof. Zimmermann alla guida dell’Istituto . Lo diresse fino al 1852 , quando si trasferì all’Università di Monaco di Baviera .

Il museo è costituito da molti ambienti, tra cui lo studio di Liebig. Una sala più grande fu destinata ad essere, per quel tempo, un moderno laboratorio, progettato dallo stesso Liebig ( 1834 ), che venne frequentato dai chimici provenienti da tutta Europa e perfino dell’America. 

Il nuovo laboratorio era munito di cappe aspiranti, una novità in quel periodo, che eliminavano la gran parte dei problemi di salute. L’ambiente dei laboratori, prima dell’istallazione delle cappe, era così insalubre che sottoponeva a forte stress i chimici che vi lavoravano. L’“isteria del chimico”, una patologia a sé, era la diagnosi che veniva più di frequente diagnosticata .

In uno dei due banchi centrali del laboratorio si trovano due apparecchi utilizzati per l’analisi delle sostanze organiche. In entrambi vediamo il nostro oggetto in vetro (vedi immagine seguente ).

L’oggetto faceva parte dell’apparecchio per l’analisi elementare. Fu disegnato dallo stesso Liebig ( 1831). La sua posizione rispetto all’apparato è evidenziata nell’immagine seguente tratta dalla Enciclopedia di Chimica Vol. II del 1868 curata dal Prof. Francesco Selmi .L’apparecchio è simile al primo esemplare apparso nel laboratorio di Liebig verso la fine degli anni trenta dell’800.

Come funzionava l’apparato per l’analisi elementare

Osserviamo la figura precedente. Nel fornetto di metallo F veniva collocato, su uno strato di carbone, un tubo di vetro chiuso ad una estremità E, contenente la sostanza organica da analizzare e ossido rameoso. La temperatura raggiunta nel fornetto decomponeva l’ossido rameoso in rame e ossigeno. Era quest’ultimo che alimentava la combustione della sostanza organica. Non veniva usata aria, l’ossidazione risultava più completa, e la velocità della reazione controllata dal grado di riscaldamento del fornetto. L’apparecchio, così come è rappresentato, veniva utilizzato per l’analisi di composti quali aldeidi, alcoli, chetoni ecc. Erano esclusi i composti azotati .

I prodotti della combustione CO2 e H2O uscivano dall’estremità A , passavano nel tubo riempito di cloruro di calcio C che tratteneva l’acqua, mentre il biossido di carbonio gorgogliava nel nostro strumento di vetro a cinque bolle contenente una soluzione di idrossido di potassio, e per questo chiamato “ Kaliapparat”, dove veniva assorbito. Il disegno di quest’ultimo era pensato per favorire l’assorbimento del biossido di carbonio aumentando la superficie assorbente e il percorso del gas.

                             Il Kaliapparat   –   Nella grossa bolla gorgogliavano i gas provenienti dalla combustione della sostanza organica mentre la più piccola era collegata con la parte finale dell’ apparato .

Terminata la combustione veniva rotta la punta B del tubo F, l’aria entrava, dopo averla prima essiccata, fluiva attraverso l’apparato, aspirata attraverso il boccale E (operazione che non era priva di rischi ). L’operazione serviva a rimuovere dall’apparecchio le ultime tracce di acqua e biossido di carbonio. Da notare che una bolla di vetro H era inserita dopo lo strumento a cinque bolle. Era riempita di idrossido di potassio solido. La sua funzione era quella di trattenere le tracce di gas CO2 che potevano sfuggire al Kaliapparat e/o le gocce d’acqua che da quest’ultimo potevano essere trasportate dalla corrente d’aria finale. Terminata l’operazione l’aumento di peso del tubo C forniva la quantità di acqua prodotta con la combustione e quindi la quantità dell’elemento idrogeno del campione .

L’aumento di peso che si registrava nel Kaliapparat D più quello eventuale nella bolla H dava la quantità di CO2 prodotta con la combustione da cui si ricavava il peso dell’elemento carbonio del campione. La differenza tra il peso del campione e quello degli elementi carbonio e idrogeno trovati, forniva il peso dell’ossigeno contenuto nel campione .

Il contributo del Kaliapparat

Il procedimento per l’esecuzione di una analisi era in realtà molto minuzioso, fatto da tanti trucchi, per esempio le bolle del Kaliapparat erano inclinate durante l’analisi con la bolla più grossa in basso, e accorgimenti, tra cui la verifica della tenuta dell’apparecchio poiché lavorava in depressione. A Liebig occorsero sei anni per perfezionare il suo metodo di analisi. La difficoltà più grande fu quella di ottenere un assorbimento quantitativo della CO2. Un risultato che raggiunse con il suo ingegnoso strumento a cinque bolle, il   “ Kaliapparat “ che rimase in uso per tre quarti di secolo. Una analisi veniva compiuta in meno di un’ora. Quell’abile sperimentatore quale era Berzelius impiegava nell’analisi di una sostanza organica un tempo non inferiore ai due giorni .

(Nella bibliografia sono riportati i riferimenti in cui viene descritto il funzionamento dell’apparecchio e dell’assorbitore Kaliapparat )

Una bilancia su misura

Poiché gli elementi si ottenevano per via gravimetrica era necessario avere bilance sensibili e accurate. Nella stanza delle bilance, adiacente al laboratorio di Liebig, si conserva ancora la bilancia che Liebig si fece costruire su suo disegno da un locale ebanista. Aveva una portata di cento grammi e una accuratezza di 0.3 mg. Per esempio la combustione di un campione di 0.5 g produceva qualcosa come un grammo di CO2 con una accuratezza migliore dello 0.1 % . Una nota curiosa, ad ogni pesata, i lunghi bracci della bilancia oscillavano lentamente avanti e indietro molte volte prima di fermarsi . L’operazione risultava così noiosa che era chiamata “ il martirio della pesata “ . Liebig la rese più sopportabile per se stesso da fumatore , coniando il motto “ un sigaro per ogni pesata “ .

Una lunga storia

Per oltre 150 anni dall’epoca di Lavoisier fino alla seconda guerra mondiale, l’analisi per combustione fu lo strumento principale per il progredire della chimica organica. Molte delle nostre attuali conoscenze furono possibili utilizzando questo strumento. I principali miglioramenti nel corso di questo lungo periodo sono consistiti nel migliorare la convenienza del metodo e nel ridurre la dimensione del campione necessario per analisi su molecole di origine biologica. Le analisi di Lavoisier (anni 1780) potevano consumare più di 50 g di oli vegetali, richiedevano una squadra di operatori e un apparecchio molto costoso ( lo si può vedere al bellissimo Museo delle Arti e dei Mestieri di Parigi). Quaranta anni dopo Liebig, modificando l’approccio di Berzelius, ideava un apparato che richiedeva una quantità di campione che era soltanto 1% di quella usata da Lavoisier ( 0.5 g ). L’analisi poteva essere eseguita velocemente da un solo studente con una attrezzatura economica. Quasi cento anni dopo Liebig, Fritz Pregl ha ricevuto il Premio Nobel 1923 per avere miniaturizzato l’apparato che richiedeva un campione il cui peso era soltanto l’ 1% di quello impiegato da Liebig ( 5 mg o meno ).

Un ricordo

Ho visitato l’istituto di Chimica di Liebig a Giessen nel 2012, durante un soggiorno in Germania. Penso sia stata una delle visite più interessanti e coinvolgenti fatte nei luoghi della chimica. Il Prof. Manfred Kroeger dell’Università di Giessen, uno dei curatori del museo, ci ha accompagnato nella visita spiegandoci in dettaglio e con pazienza la storia e gli ambienti del museo. Erano in vendita presso il negozio del museo modelli in scala reale del Kaliapparat costruiti dagli studenti di chimica .

Il materiale filmico

Nella visita a Giessen scattai molte fotografie e girai dei filmini che ho trasferito su You Tube. Nel primo filmino è ripreso il laboratorio di Liebig a Giessen. Liebig si trasferì all’Università di Monaco di Baviera nel 1852. Al Deutsches Museum, il Museo della Scienza e della Tecnica di Monaco, si può vedere una parziale ricostruzione del laboratorio di Giessen. Il museo è un altro luogo di eccezionale valore per la storia della scienza e della tecnica ( in specie per la chimica ). Nel secondo filmino è ripreso il laboratorio al Museo di Monaco .

https://www.youtube.com/watch?v=MLFNKonPSzs&t=29s

https://www.youtube.com/watch?v=Hr2Qq3QzwVM

Nel mio blog

http://www.robertopoetichimica.it/la-composizione-delle-sostanze-la-combustione/

Bibliografia

Il POLIMI all’esame di elettrochimica.

In evidenza

Claudio Della Volpe

Della reazione di Volta e delle arance o dei limoni usati come batterie (in inglese orange e lemon batteries) abbiamo parlato più volte, si tratta di un argomento affascinante e che attira l’attenzione; l’ultima volta abbiamo segnalato anche una bufala riguardante la possibilità di accendere il fuoco con un’arancia.Stavolta siamo costretti a tornare sulla questione per un piccolo errore nientepocodimenochè del Politecnico di Milano, POLIMI, (nella persona del collega Francesco Grimaccia associato di elettrotecnica) che nel meritevole proposito di divulgare la scienza con una iniziativa definita #IlPOLIMIrisponde (su Youtube) riportata da ANSA, racconta (in data 7 novembre, anniversario dell presentazione di Volta a Napoleone) di come con un’arancia e una coppia di elettrodi metallici (e meglio con un paio almeno messi in serie) si possa accendere un LED.

La cosa come sappiamo è vera, a patto che il LED sia rosso, cioè a più basso voltaggio; un led bianco sarebbe difficile da accendere con sole due arance; ma vedremo dopo. Tuttavia il collega Grimaccia incorre in un banale errore di elettrochimica che vale la pena di correggere, visto che quel filmato l’avranno visto in alcune centinaia e grazie a questo commento lo vedranno in altre centinaia.

Dopo una introduzione storica l’autore scrive quale è il principio del processo ed indica la seguente reazione:Dunque secondo Grimaccia nella reazione di Volta lo zinco metallico  si ossida e lo ione rame si riduce. E’ da dire che nella successiva descrizione la cosa rimane non spiegata poichè si analizza solo il passaggio da un elettrodo all’altro fuori dall’arancia.

Ora questa interpretazione della reazione di Volta non è corretta per la semplice ragione che ioni rame nell’arancia e nella soluzione acidula di Volta non ce ne sono e non ce n’erano; si tratta invece di una reazione che potrebbe avere dal lato della riduzione ossia del rame (che funziona qui come semplice catalizzatore) o la riduzione degli ioni H+ oppure quella dell’ossigeno molecolare, che pure sarebbe più utile; per vari motivi, fra cui la concentrazione, la soluzione “acidula” di Volta e quella naturale dell’arancia o del limone (acidule per acido citrico) vedranno come interpretazione giusta la prima:(qua c’è un errore di stampa in quanto il potenziale di riduzione dello Zinco è -0.76) come scritto ed analizzato in questo articolo divulgativo:

https://pubs.acs.org/doi/abs/10.1021/ed078p516

Observations on Lemon Cells di Jerry Goodisman J. Chem. Educ., 2001, 78 (4), p 516 DOI: 10.1021/ed078p516

Come si vede è chiaro che ci vogliano almeno un paio di arance (e rispettivi elettrodi) collegate in serie ed usate come soluzione elettrolitica per il LED rosso che lavora a 1.5-2 V, ma per un LED bianco che lavora a circa 3V ci vorranno quattro o cinque frutti (motivo banale: il rosso è la radiazione a più elevata lunghezza d’onda e dunque più bassa energia delle altre e i LED, ma ne parleremo un’altra volta, sono nient’altro che delle giunzioni p-n usate alla rovescia rispetto alle celle fotovoltaiche: il LED trasforma energia elettrica in luce e la FV la luce in energia elettrica, ma potete usare un LED come FV e viceversa anche se con poca sostanza; ed infine una giunzione p-n è l’equivalente moderno sui semiconduttori dei metalli in contatto che furono alla base dell’esperimento di Volta).La reazione scritta dal collega Grimaccia, e che non vale in questo caso, invece diventerà la base di un’altra importantissima batteria, quella di Daniell, dove però lo ione rame viene aggiunto esplicitamente;Dunque l’errore consiste nell’aver usato le reazioni di Daniell al posto di quelle di Volta. Per fare una pila di Volta va bene al posto del rame anche un elettrodo di grafite o di qualunque altro metallo a potenziale di riduzione adeguato e come il rame dunque di fatto inerte nella situazione in questione.

Si può perfino NON usare una soluzione acidula e le cose funzionano lo stesso ragionevolmente per introduzione dell’effetto dell’ossigeno gassoso che è pur solubile per 9mg/litro in acqua; a quel punto si avrebbe una batteria Zinco-aria e manco lo ione idrogeno servirebbe più. A questo punto si introdurrebbe una tematica che è quella della sovratensione di reazione dei vari reagenti ione idrogeno o ossigeno su elettrodi metallici che in realtà non partecipano alla reazione; si arriva ad un altro celeberrimo tema che è quello dei meccanismi cinetici dell’elettrochimica, un argomento che la chimica generale sfiora solamente, ma molto importante in pratica.

Tutte queste cose Volta non poteva saperle, ma noi suoi eredi dopo 200 anni dovremmo scriverle chiaramente.

Ovviamente al collega Grimaccia va il beneficio di inventario; né si può pretendere da un ingegnere elettrotecnico (che si occupa di correnti alternate in genere) la stessa conoscenza di un elettrochimico su questi fenomeni. Sia all’ANSA che al Polimi il consiglio è lo stesso; per parlare di Chimica rivolgetevi ad un Chimico (in fondo a pochi chilometri da voi c’è la sede del Dipartimento dove lavorarono Bianchi, Mussini e Trasatti senior, che hanno fondato l’elettrochimica italiana).

E’ pur vero che la Chimica serve a tutti, ma non per questo tutti la conoscono in dettaglio.

Da consultare anche:

http://www.ansa.it/canale_scienza_tecnica/notizie/energia/2018/11/16/cosi-le-arance-accendono-la-luce-video_b46c8e68-3da1-4e17-b055-5b8772f333ff.html

https://www.youtube.com/watch?time_continue=146&v=x8PV-0vRMbE

https://www.scientificamerican.com/article/generate-electricity-with-a-lemon-battery/

La transizione energetica: come la vedono gli scienziati

In evidenza

Vincenzo Balzani, professore emerito UniBo

Il cambiamento

In due recenti articoli pubblicati su La Chimica e l’Industria on line [1,2] ho provato a spiegare perché per salvare il nostro pianeta, l’unico luogo dove possiamo vivere, dovremo portare a termine tre transizioni: dai combustibili fossili alle energie rinnovabili, dall’economia lineare all’economia circolare e dal consumismo alla sobrietà.

Transizione vuol dire cambiamento e l’esperienza dimostra che le persone non amano cambiare. Se ne era già accorto molto tempo fa Niccolò Macchiavelli che, secondo alcune fonti, pare abbia scritto: Non c’è niente di più difficile da prendere in mano, più pericoloso da condurre, o più incerto nel suo successo che prendere la guida di un cambiamento. Perché il riformatore ha nemici in tutti coloro che traggono profitto dal vecchio ordine e ha solo tiepidi difensori in tutti coloro che trarrebbero profitto dal nuovo ordine; questa tiepidezza deriva in parte dalla paura dei loro avversari e in parte dall’incredulità dell’uomo, che non crede veramente in qualcosa di nuovo fino a quando non ne ha avuto l’esperienza effettiva”.

Quindi, portare avanti tre transizioni, in parte interconnesse, per salvare il pianeta non sarà affatto facile. Sappiamo però che questa è l’unica via che possiamo percorrere per giungere alla sostenibilità ecologica, che a sua volta è la base per raggiungere la sostenibilità sociale. Ciascuno di noi, nella situazione in cui si trova e con l’attività che svolge deve assumersi la sua parte di responsabilità. Questa vale particolarmente per gli scienziati, dai quali la pubblica opinione si aspetta prese di posizione chiare e ben documentate, per gli educatori che operano nelle scuole di ogni ordine e grado e per i mezzi di comunicazione che hanno il compito di diffondere le conoscenze e mettere a confronto in modo costruttivo proposte e opinioni affinché quelle più giuste possano affermarsi.

Difficoltà intrinseche

Affinché una transizione avvenga nel modo corretto, deve essere guidata. Bisogna partire da un quadro chiaro e completo della situazione in cui ci si trova e fare previsioni, formulare scenari e preparate roadmap per raggiungere l’obiettivo in un tempo ragionevole. Guidare la transizione energetica è un’impresa molto difficile perché la realtà è in continua evoluzione: aumenta il numero di abitanti del pianeta; aumentano le esigenze energetiche di miliardi di persone; in molte nazioni la situazione politica è confusa e i suoi esiti sono difficilmente prevedibili; le decisioni politiche sono influenzate da fattori economici e pressioni sociali, spesso in contraddizione; il prezzo del petrolio, con cui le energie rinnovabili devono competere, ha variazioni spesso irrazionali; infine, è sempre più evidente che le risorse del pianeta sono limitate, per cui i progressi nella transizione energetica sono forzatamente collegati a quelli della transizione dall’economia lineare all’economia circolare.

Gli scenari, inevitabilmente basati su estrapolazioni, devono quindi essere frequentemente aggiornati e, in ogni caso, vanno sempre considerati con cautela. Ciò nonostante, è importante cercare di prevedere cosa ci può riservare il futuro e ancor più capire l’impatto che avranno nei prossimi decenni le scelte che siamo chiamati a fare oggi. La domanda urgente a cui è necessario rispondere, se vogliamo custodire il pianeta, è: possiamo limitare le emissioni di CO2 in modo da mantenere l’aumento di temperatura al 2050 sotto i 2°C o, meglio, sotto 1,5 °C? [3, 4]. Su tempi lunghi, poi, la domanda che aspetta risposta diventa: è fattibile e sostenibile un mondo che funzioni solo con le energie rinnovabili?

Quasi tutte le agenzie internazionali hanno centri di studio sulla transizione energetica [5]. A volte le previsioni di queste agenzie sono condizionate dalla potente lobby del petrolio, come nel caso della IEA. Gli scenari che alcune di queste agenzie presentano per il futuro hanno come compito principale quello di suggerire al mondo economico e finanziario come comportarsi per mantenere profitti nell’ottica di una lenta transizione dai fossili alle rinnovabili, senza preoccuparsi dei tempi indicati dagli scienziati. I centri di ricerca scientifici, invece, cercano di analizzare la situazione e di suggerire cosa bisogna fare in concreto, incominciando da oggi, per portare a termine la transizione entro il 2050.

Il piano WWS proposto da M.Z. Jacobson e collaboratori

Negli ultimi anni sono stati riportati studi dettagliati da parte di molti gruppi di ricerca secondo i quali si possono sostituire completamente, entro il 2050, i combustibili fossili con le energie rinnovabili. Alcuni di questi piani sono stati criticati (si veda, ad esempio, [6]), ma la fattibilità della transizione energetica che prevede solo l’uso di energia elettrica generata dalle rinnovabili nel 2050, senza energia nucleare, è stata recentemente ribadita da una rassegna esaustiva della ricca letteratura scientifica sull’argomento [7].

Lo studio più dettagliato [8] è quello di M.Z. Jacobson della Stanford University che, con 26 co-autori, presenta roadmap di transizione per 139 paesi del mondo molto più spinte di quelle previste dagli accordi di Parigi. Gli autori sottolineano che le roadmap da loro illustrate non sono previsioni di quello che potrebbe accadere da oggi al 2050, ma proposte che, se attuate, risolveranno concretamente i problemi del cambiamento climatico, dell’inquinamento e della sicurezza energetica.

Il piano di Jacobson e collaboratori è denominato WWS (wind, water, sunlight) in quanto è basato unicamente sull’utilizzo di vento, acqua e sole come sorgenti primarie nel 2050. Sono esclusi il gas e il nucleare (proposti da altri autori come «energie-ponte»), e anche i biocombustibili, le biomasse e le tecnologie per la catturare ed immagazzinare la CO2. Il piano WWS prevede che i consumi energetici di tutti i settori dell’attività umana siano soddisfatti esclusivamente con elettricità fornita dalle energie rinnovabili e distribuita tramite reti, con l’impiego di accumulatori e idrogeno elettrolitico (celle a combustibile) per i trasporti, anche aerei e marittimi.

Secondo il piano WWS, la potenza che sarebbe necessaria nel 2050 se usassimo l’attuale sistema energetico, basato prevalentemente sui combustibili fossili (20.604 TW), sarà ridotta del 42%, per tre motivi: 1) la conversione dell’energia elettrica in lavoro è più efficiente del 23% rispetto all’uso di combustibili fossili; 2) WWS non ha le perdite di efficienza (valutate al 12,6%) legate all’estrazione, al trasporto e alla raffinazione delle fonti fossili; 3) in un sistema tutto elettrico si può contare su un aumento dell’efficienza energetica (6,9%). Il piano, illustrato nella Figura 1, prevede l’80% della conversione entro il 2030 e il 100% nel 2050.

Figura 1. Schema della transizione energetica secondo Jacobson e altri [8]. Per una descrizione dettagliata, si veda il testo e il lavoro originale.

Gli 11.840 TW di potenza elettrica richiesta nel 2050 per le 139 nazioni prese in considerazione saranno forniti principalmente da impianti fotovoltaici di varie dimensioni (48%), eolico onshore e offshore (37%) e per il 9,7% da impianti solari a concentrazione (Concentrating Solar Power, CSP) [8]. Sarà necessario installare fra l’altro 1.840.000.000 impianti fotovoltaici da 5 kW che saranno collocati sui tetti delle abitazioni, sulle tettoie dei parcheggi e sulle autostrade e 1.580.000 impianti eolici onshore da 5 MW, distesi sullo 0,9% del territorio che rimarrà usabile per l’agricoltura. Le tecnologie necessarie per sostituire nell’uso finale i combustibili fossili con energia elettrica sono già in gran parte disponibili in commercio, mentre altre (ad esempio, navi e aerei elettrici) sono in via di sviluppo e si prevede che saranno di uso comune fra una ventina d’anni.

La realizzazione del piano WWS diminuirà le emissioni di CO2, evitando che si superino 1,5 °C di riscaldamento globale nel 2050. Darà a ogni nazione la possibilità di produrre l’energia che consuma e faciliterà l’accesso all’energia per tutti; eviterà anche la morte prematura di circa 3,5 milioni persone causata dall’inquinamento e permetterà un risparmio medio di 5.800 dollari per persona all’anno sulle spese dovute da inquinamento e cambiamento climatico. Creerà circa 25 milioni di posti di lavoro permanenti nelle costruzioni e 27 milioni di posti permanenti per la manutenzione del sistema, per un totale di circa 52 milioni, a fronte di circa 28 milioni di posti persi nelle attività dei combustibili fossili e dell’energia nucleare.

Il piano WWS è estremamente dettagliato [8]. Esamina, paese per paese, i dati disponibili sui consumi energetici attuali e stima la domanda di potenza che ci sarà nel 2050 in ciascun paese prima e dopo l’elettrificazione di tutti i settori energetici. Poi analizza per ciascun paese la disponibilità di risorse rinnovabili per generare elettricità e propone una roadmap basata sul mix energetico rinnovabile più adatto per ciascun paese, tenendo conto della disponibilità di suolo, tetti, vento, acqua e situazioni particolari. Un simile, dettagliatissimo piano è stato poi formulato anche per 53 città del Nord America [9].

Per l’Italia, l’analisi dettagliata dello studio si può riassumere con i seguenti dati riferiti al 2050 [8]:

– la potenza di 240,8 GW per uso finale prevista sulla base del sistema energetico attuale si ridurrà a 134,9 GW in seguito all’elettrificazione;

– la potenza sarà generata dalle varie fonti rinnovabili in base a queste percentuali:

fotovoltaico nelle sue varie applicazioni 56,7%; eolico onshore e offshore 26,3%; CSP 11,3%; idroelettrico 4,9%; geotermico 0.6%

– il fotovoltaico residenziale genererà il 16,4% della potenza totale, utilizzando il 67% dei 737 km2 di tetti disponibili;

– dal punto di vista economico, si avrà un risparmio di 382 $/persona/anno sul costo dell’elettricità e un risparmio sui costi dei danni causati da inquinamento e cambiamento climatico per una media di 7.700 $/persona/anno;

– si eviterà la morte prematura per inquinamento, in media, di circa 20.000 persone all’anno;

– verranno perduti circa 160.000 posti di lavoro nei settori dei combustibili fossili, ma si creeranno circa 300.000 nuovi posti di lavoro permanenti per attività di costruzione e 350.000 per attività di gestione delle energie rinnovabili con un saldo positivo di circa 500.000 posti.

Lo studio conclude notando che la transizione, pur essendo tecnicamente ed economicamente fattibile, incontrerà molti ostacoli di tipo sociale e politico: c’è quindi un grande bisogno di informare le persone su quello che è possibile fare e sollecitarle a portare avanti la transizione nelle loro case e nella loro vita di ogni giorno. In Italia, purtroppo, la Strategia Energetica Nazionale punta fortemente sul gas e sui biocombustibili e il tentativo di informare sulla necessità della transizione energetica solo eccezionalmente arriva al grande pubblico [10]

  1. 1. La Chimica e l’Industria – ISSN 2532-182X – 2018, 5(7), ottobre
  2. La Chimica e l’Industria – ISSN 2532-182X – 2018, 5(8), novembre
  3. http://unfccc.int/resource/docs/2015/Cop21/eng/l09r01.pdf
  4. http://report.ipcc.ch/sr15/pdf/sr15_spm_final.pdf
  5. http://www.iea.org/weo/

https://about.bnef.com/new-energy-outlook/

http://www.iiasa.ac.at/web/home/research/twi/TWI2050.html

http://exponentialroadmap.futureearth.org

http://www.irena.org/publications/2018/Apr/Global-Energy-Transition-A-Roadmap-to-2050.

  1. B. Heard et al., Renew Sustainable Energy Rev, 2017, 76, 1122 DOI:10.1016/j.rser.2017.03.114
  2. T. W. Brown et al., Renewable and Sustainable Energy Reviews, 2018, 92, 834; 
https://www.sciencedirect.com/science/article/pii/S1364032118303307
  3. M.Z. Jacobson et al., Joule, 2017, 1 ,108-21, con 186 pagine di informazioni supplementari

http://dx.doi.org/10.1016/j.joule.2017.07.005

  1. M.Z. Jacobson et al., Sustainable Cities and Society, 2018, 42, 22 https://doi.org/10.1016/j.scs.2018.06.031
  2. https://ilblogdellasci.wordpress.com/2018/08/15/ascoltare-la-scienza-lincidente-di-bologna-e-la- transizione-energetica/

6 anni di blog.

In evidenza

La redazione.

6 anni di blog.

Oggi 14 novembre 2018 questo blog compie 6 anni; abbiamo pubblicato poco meno di 1000 articoli (985), 3 alla settimana in media con poco meno di un milione di contatti totali (per la cronaca sono 970.000).

Il numero di contatti al giorno è cresciuto parecchio arrivando a superare negli ultimi tempi i 1000 al giorno. Ma siamo particolarmente fieri dei quasi 500 iscritti, che ricevono notizia dei post automaticamente; si tratta in buona parte di non iscritti alla SCI, dunque che hanno scelto di seguirci autonomamente.

Poco più di 2500 interventi, circa 3 per ogni articolo.

Qualche curiosità; l’articolo più gettonato in assoluto?

Quello sulla Chimica alle elementari, della sempreverde Silvana Saiello che ha raggiunto quasi 20.000 contatti da quando (2013) è stato pubblicato e continua a ricevere una crescente attenzione; nello scorso mese di ottobre ha avuto da solo oltre 1200 lettori. Pensate un po’. Un classico della divulgazione.

Il più letto in un giorno è stato invece un articolo di Gianfranco Scorrano, gennaio 2014 una critica feroce di alcuni metodi concorsuali all’Università, oltre 2500 contatti in 24 ore , La cattedra e…. la sedia.

Non dimentichiamo però anche le serie sulla merceologia, sulla depurazione, sulla storia della scienza al femminile, le riflessioni etiche, quelle sulla contemporaneità, sulle nuove scoperte, sull’energia rinnovabile e l’economia circolare, il cuore del blog. E non dimentichiamo che ci siamo schierati, sul clima, sull’energia, sui diritti delle donne, sull’uso della Chimica; abbiamo scelto, preso posizione; non possiamo più tacere.

Tanto lavoro per la nostra piccola redazione che, seppure ha cambiato un po’ composizione nel tempo, rimane una redazione di una decina di persone.

Certo abbiamo ricevuto nel tempo anche i contributi di tanti colleghi che più o meno regolarmente ci mandano qualche testo e che ringraziamo; all’inizio speravamo di riuscire a catalizzare maggiori contributi, ma siamo contenti comunque. Non pretendiamo un Primo Levi, ma continuiamo ad insistere su una partecipazione discreta ma continua; se dei 3500 soci della SCI, che sono, dopo tutto, meno del 5% dei chimici italiani, il 10% scrivesse un articolo all’anno avremmo un post al giorno.

C’è stata una crisi di crescita quando abbiamo cambiato nome nel gennaio 2017; il blog della SCI è diventato “La Chimica e la Società” (richiamando il titolo della rivista storica della SCI); questo cambio ha corrisposto ad un notevole incremento dei lettori, che sono quasi raddoppiati .Negli ultimi mesi un ulteriore crescita catalizzata sia dagli agguerriti testi di Vincenzo Balzani sull’impegno dello scienziato, che anche dal lancio su Facebook aperto a tutti i lettori.

Siamo ancora lontani dal fare un giornale online di chimica, una piazza aperta a tutti i chimici italiani, uno strumento per fare opinione, ma col nostro sottotitolo attuale siamo una testimonianza del fatto che la Chimica è la scienza fondamentale per la nostra società e cerchiamo di stare sul pezzo, seguire i fatti importanti in cui la Chimica conta e sui quali occorre schierarsi.

Homo sapiens è stato un chimico fin dall’epoca di Blombos 101.000 anni fa, quando faceva pigmenti per dipingersi il corpo; poi ha iniziato a dipingere gli animali attorno a lui e tante, tante mani sulle pareti delle caverne.

La più antica testimonianza di pitture rupestri, Lubang Jeirji-Saleh, Borneo 40.000 anni fa (Nature nov. 2018 Palaeolithic cave art in Borneo)

Oggi, nell’Antropocene dovrebbe calmarsi un po’ dato che ha “dipinto”, ha messo le sue mani su tutto il pianeta, con una impronta non particolarmente positiva per il resto della biosfera, e che si sta rivelando un boomerang, capace di danneggiare la stessa Umanità.

Siamo qua per dare un piccolo contributo in questo senso: prendere coscienza della potenza insita nelle nostre mani, nei nostri cervelli, nell’azione comune; e della necessità di sottomettere al controllo della ragione e dell’amore la nostra intelligenza. Dunque chimica del riciclo, chimica sostenibile e rinnovabile ma soprattutto chimica dell’amore, usata con amore della Natura e per amore dell’Umanità; dopo tutto siamo solo una minuscola specie di primati saccenti, che infilano mani dappertutto, in una piccola arancia blù, un minuscolo pianeta, alla periferia di una Galassia lontana lontana.

Buona lettura.

Il fango e quegli idrocarburi del cavolo.

In evidenza

Claudio Della Volpe

Continuiamo a parlare dell’art.41 del decreto “Genova” di cui abbiamo già parlato in un post precedente; si tratta di un testo che è stato integrato durante l’approvazione del decreto “Genova” e il cui testo riporto in calce (lo trovate qui).

Ricordo che sulla composizione dei fanghi esisteva una legge dedicata la legge 99/92, in cui si scrivono criteri generali e nelle appendici una almeno parziale lista di limiti di composizione dell’effluente nei suoi rapporti con la matrice (qua si potrebbe discutere sul problema costituito dai rapporti fra effluenti e matrice, problema che già ebbe potente ruolo nel caso delle acque e della legge Merli, entrambi devono essere considerati). Sul tema le regioni più interessate avevano legiferato arrivando a stabilire criteri su altri componenti, in particolare gli idrocarburi C10-C40; contro quel limite e su altri, alcuni comuni lombardi avevano fatto ricorso e il TAR e la Cassazione gli avevano dato ragione, sostenendo che

i fanghi da depurazione sono destinati ad essere mescolati ad ampie porzioni di terreno e a divenire, quindi, un tutt’uno con esso; appare pertanto logico che il fango rispetti i limiti previsti per la matrice ambientale a cui dovrà essere assimilato”

una logica fallace, che impedirebbe perfino di spargere dei comuni concimi biologici, in quanto nemmeno il letame rispetta i limiti previsti per la matrice ambientale e men che meno lo fanno i concimi di sintesi o altri ammendanti; eh si perchè miei cari Giudici delle Corti se si aggiungono essi vengono aggiunti proprio allo scopo di modificare le caratteristiche del terreno, reintegrando ciò che è stato consumato dalla produzione di cibo oppure introducendo componenti necessari ma non presenti! Questo criterio trascura anche il fatto che il terreno è una struttura di massa molto maggiore del fango (che vi può venire aggiunto secondo l’art. 3 della legge 99/92 in ragione di sole 15ton/ettaro, ossia una frazione dell’ordine dell’1/1000 o meno della massa di terreno per ettaro usata in agricoltura che arriva almeno a 40cm) che dunque lo diluisce; che è una struttura viva, che è in grado cioè “metabolizzare” il fango di trasformarlo almeno parzialmente.

Per questo mentre ha senso imporre limiti uguali a quelli del suolo per il cadmio, presente come ione e che non potrà essere “smontato” in alcun modo, così come per molecole organiche stabili, i POPs, persistent organic pollutants come il DDT o il PCB, non è la stessa cosa per le molecole come gli idrocarburi lineari che sono persino presenti anche nella struttura dei tessuti organici (come vedremo più avanti).

Ma tant’è! Questo ha bloccato il riciclo dei fanghi e dunque ha portato alla necessità di modificare le cose, regolamentando meglio della legge 99 la situazione, come sta facendo il Parlamento con l’art.41 che AGGIUNGE nuovi limiti per i fanghi che prima non esistevano.

Ovviamente le proteste dei Comuni e dei loro cittadini hanno motivi ragionevoli, per esempio nell’abuso legato all’uso di fanghi non civili o all’eccesso di uso, al modo scorretto di trasporto oppure infine all’odore pestifero e così via, tutti aspetti però che non toccano il problema di fondo e che devono essere risolti per altra via, per esempio migliorando la depurazione (come descritto da Mauro Icardi in post precedenti), imponendo metodi di trasporto diversi, con maggiori controlli sulle distanze dalle abitazioni e contrastando le ecomafie che sono diffuse anche nelle regioni del Nord non solo nella “terra dei fuochi”, dunque con una legge più completa e moderna della 99/92.

I fanghi di origine civile (cioè le nostre deiezioni così come il letame e le altre deiezioni degli animali a noi asserviti) sono utili all’agricoltura e servono a chiudere il ciclo agricolo, cosa del tutto necessaria e logica e che noi non facciamo ancora o forse non facciamo più, dato che la logica del riciclo è parte della cultura dell’agricoltura tradizionale da millenni.

Ovviamente le deiezioni di una volta, che i contadini riusavano nel terreno (si veda la citazione di Liebig nel post precedente) erano diverse da quelle attuali; vi pare strano? E invece no, non solo perchè mangiamo cose diverse, ma anche perchè nei depuratori arrivano oltre ai resti del cibo anche altri prodotti casalinghi; i detersivi, i cosmetici, le droghe, i farmaci e tanti altri prodotti di sintesi che certo il contadino di Liebig non usava.

Questo impone un riesame continuo dei metodi di depurazione che sono stati esaminati nei numerosi post di Mauro Icardi in questo blog e che devono essere adeguati, studiati migliorati; il depuratore deve diventare la fabbrica dell’acqua, ma anche il centro di un modo nuovo di sentirci parte dell’ecosfera.

Noi non siamo estranei all’ecosfera, ne siamo parte integrante; la vita è a sua volta parte della superficie terrestre, di quel supersistema di interazioni che Lovelock ha chiamato Gaia. Il depuratore non è un posto che puzza, è un momento cruciale di questa interazione, il simbolo della nostra capacità di integrarci in Gaia.

Voglio chiudere questo post raccontandovi una cosa che riguarda la presenza degli idrocarburi lineari nelle piante e dunque nei campi e nel suolo; degli idrocarburi in genere abbiamo già detto (sono infatti idrocarburi lineari ma insaturi il licopene del pomodoro, il betacarotene della carota); parliamo di quelli saturi.

Come ho raccontato altrove mi occupo di bagnabilità; per esempio di cose come l’angolo di contatto delle superfici e dunque anche di quelle naturali; molti lettori avranno sentito parlare del loto e delle superfici superidrofobiche, ossia che non si bagnano. Molte piante hanno sviluppato strutture superficiali che servono proprio a questo, che tengono cioè la superficie foliare pulita, priva di acqua, perchè l’acqua oltre ad essere un bene prezioso e necessario è anche il vettore di infezioni: muffe, batteri e funghi. Dunque controllare il suo flusso ed evitare il suo accumulo in certe zone è fondamentale; anche l’acqua è una molecola a due facce, come tutte le cose, buona e cattiva, la dualità della Natura, la dialettica della natura (avrebbe detto Guido Barone che ci ha lasciato da poco: “ogni molecola ha due corni”). L’acqua è fondamentale da bere, ma evitate di farla entrare nei vostri polmoni, diventa mortale.

Una foglia di loto coltivata in una vasca nel mio laboratorio, notate la forma delle gocce di acqua che non “si attaccano” ma scivolano sulla superficie.

Come fanno le piante a creare superfici superidrofobiche? Nessun materiale supera la idrofobicità dei legami fluorurati CF o anche CH; il comune materiale idrofobico naturale sono le cere, ossia catene idrocarburiche CH2, terminate con CH3. Alcune di queste cere cristallizzano spontaneamente in forme aghiformi, dando luogo dunque a strutture “pelose” di fili idrofobici.La superficie di una foglia di loto al SEM dell’Ospedale S. Chiara di Trento che ringrazio. Notate la pelosità superficiale dovuta alle cere epicuticolari.

E’ un trucco molto comune in natura; gli uccelli acquatici si lisciano continuamente le penne costituite di strutture filamentose per spargere il grasso prodotto dalle loro ghiandole superficiali e rendono le penne idrofobiche; infatti la scadente capillarità dei grassi (e delle cere) impedisce all’acqua di scacciare l’aria dai loro sottili contorni e dunque impedisce di raffreddare l’animale, che rimane nelle sue penne come in un …piumino.

Le piante, la cui dinamica è molto più lenta degli animali, usano strutture diverse, le cosiddette cere epicuticolari che stabiliscono il loro dominio all’estremo del loro corpo, all’esterno delle pectine e della cellulosa, impedendo la penetrazione dell’acqua e anzi facilitandone lo scorrimento. Il loto è il sacro simbolo della purezza, grazie a questo trucco; ma in realtà molte piante comuni ed umili sono altrettanto ricche di cere epicuticolari.

Il comune cavolo, Brassica Oleracea, diffuso alimento delle regioni del Nord contiene 50microgrammi di cera per ogni cm2 di superficie foliare ed è altrettando superidrofobico del loto. Un metro quadro di foglia contiene dunque 0.5grammi di cere e una pianta di cavolo può contenere grammi di cere epicuticolari (Acta agriculturae Slovenica, 91 – 2, september 2008 str. 361 – 370 DOI: 10.2478/v10014-008-0016-3).

Di cosa sono fatte le cere? Sono sostanzialmente idrocarburi lineari a catena maggiore di C16, perché l’esadecano è l’ultimo idrocarburo lineare saturo a fondere a t ambiente. La cera della candela è di origine minerale, petrolifera ma è fatta al medesimo modo. Le cere epicuticolari sono costituite di varie sostanze, contenenti nel caso del cavolo, tutte una catena C27-C31, principalmente C29 , compresi in quantità notevole degli idrocarburi lineari veri e proprii (attorno a un terzo del totale delle cere); un campo di cavolo contiene dunque idrocarburi lineari di quel tipo in dose misurabile e non lontana dai limiti fissati dall’art.41 (parte f della figura successiva). Ve lo aspettavate?SEM micrographs of cell surface structuring by epicuticular waxes. (a) Thin wax films, hardly visible in SEM, cover many plant surfaces as indicated here in H. bonariensis. (b) A wax crust with fissures on a leaf of Crassula ovate, (c) β-diketone wax tubules of E. gunnii and (d) nonacosan-ol tubules on Thalictrum flavum glaucum leaves are shown. (e) Wax platelets on Robinia pseudoacacia leaves are arranged in rosettes. The waxes shown are (f) simple rodlets on a leaf of Brassica oleracea, whereas the rodlets shown are (g) transversely ridged rodlets on a leaf of Sassafras albidum. (h) Mechanically isolated waxes from a leaf of Thalictrum flavum on a glass surface show wax tubules and the underlying wax film.

Phil. Trans. Roy. Soc. A Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials Kerstin Koch, Wilhelm Barthlott

Laila R, Robin AHK, Yang K, Park J-I, Suh MC, Kim J and Nou I-S (2017) Developmental and Genotypic Variation in Leaf Wax Content and Composition, and in Expression of Wax Biosynthetic Genes in Brassica oleracea var. capitata. Front. Plant Sci. 7:1972. doi: 10.3389/fpls.2016.01972

Ma non è il solo alimento comune; in modo simile il pisello contiene elevate quantità di cere epicuticolari, così come altre comuni piante.

Attenti dunque, nella furia antifanghista, a non mettere fuori legge i campi di cavoli e piselli!

(ah dimenticavo un dettaglio; nella cera d’api un settimo circa (15%) è costituito da idrocarburi lineari della medesima dimensione di cui parliamo qui, il resto sono in gran parte acidi grassi, sempre solita catena molto lunga, attenti dunque al suolo sotto gli alveari, sarà mica fuori legge pure quello?)

L’art.41 non è una soluzione completa, è una misura di emergenza che dovrà essere sostituita da un aggiornamento della 99/92, si potrebbe scrivere meglio, ma non è un imbroglio, né una misura da inquinatori. Se ne convincessero gli ambientalisti.

*************************************************

Testo art. 41 dopo approvazione della Camera.

Il testo è diviso in due colonne; a sinistra com’era uscito dal Consiglio dei Ministri, a destra dopo le modifiche in Commissione