Analisi chimica in archeologia

In evidenza

Luigi Campanella, ex Presidente SCI.

Da un punto di vista chimico i sistemi archeologici sono molto complessi, per lo più risultando costituiti da molte specie chimiche in miscela disomogenee. Poiché è impossibile descrivere completamente un sistema complesso, l’interesse si appunta usualmente su uno o più analiti, mentre l’insieme dei componenti viene chiamato matrice; è da sottolineare che i risultati delle determinazioni di ogni singolo analita sono grandemente influenzati da quest’ultima .

La chimica analitica in un passato anche abbastanza recente richiedeva campioni di dimensioni eccessive, i suoi metodi non erano sufficientemente sensibili e le sue conoscenze sulle matrici archeologiche scarse; oggi e in prospettiva, è in grado di analizzare campioni sempre più piccoli e analiti a concentrazione sempre più bassa, e ha sviluppato una maggiore sensibilità sul problema delle matrici e sui criteri generali per tener conto dei loro effetti.

Questo si riflette in una maggiore rispondenza alle esigenze dell’archeologia, sia perché i campioni richiesti sono di dimensioni talmente ridotte da rendere il loro prelievo praticamente non-distruttivo, sia perché gli analiti in tracce vanno assumendo un preponderante significato diagnostico.

Tre sono i tipi di intervento dell’analisi chimica in archeologia:

  • analisi di poco o nessun peso sulla diagnosi;
  • analisi con metodi analitici acriticamente mutuati da altri campi applicativi;
  • analisi con metodi appropriati, appositamente sviluppati.

Con riferimento ai campi 2 e 3 le nuove tecnologie applicate ai beni culturali sono in parte mutuate dalla medicina, dalla biologia molecolare, dalla chimica e dalla fisica. Per esempio le indagini di medical imaging e morfometria geometrica si applicano ai reperti fossili per lo studio dell’evoluzione umana; l’analisi degli isotopi stabili fornisce chiarimenti sul rapporto tra alimentazione e mobilità nelle popolazioni umane del passato; tecniche microanalitiche sono utilizzate per le gemme; l’illuminazione applicata ai beni culturali è impiegata a individuare i sistemi di illuminazione più adatti e meno dannosi a cui i sistemi biologici sono sottoposti nel tempo.

L’invecchiamento delle proteine è un processo non ancora ben compreso tuttavia è noto che le proteine invecchiate sono soggette a modificazioni della catena polipeptidica che producono ad esempio diminuzione di solubilità, aumento del calore di denaturazione; inoltre variazioni di umidità ambientale e pH possono causare l’idrolisi del legame peptidico, causando variazioni del peso molecolare e reazioni di disidratazione. Lo studio sistematico di queste modificazioni, attraverso una sperimentazione in laboratorio, e quindi sottoponendo i campioni di composizione nota ad un invecchiamento accelerato, apre ampie prospettive sulla possibilità di datare i reperti archeologici a partire dall’interazione della matrice proteica con l’ambiente.

La Proteomica

Le strategie proteomiche sono procedure ormai consolidate in ambiti scientifici, soprattutto in biochimica e biologia, prevedono come processo di estrazione, quello della digestione enzimatica che riduce le proteine a polipeptidi più piccoli o singoli amminacidi idrolizzando i legami peptidici; questo comporta che da ogni singola proteina ottenuta viene liberato un set specifico di peptidi che ne costituisce l’impronta digitale. La mistura proteica ottenuta, viene poi identificata con una tecnica cromatografica accopiata alla spettrometria di massa, evidenziando i cambiamenti della sequenza amminoacidica e le eventuali modifiche delle catene laterali.

Nel settore della diagnostica applicata ai beni culturali la caratterizzazione delle sostanze organiche è estremamente importante ed è di particolare interesse per diversi settori che vanno dall’archeologia alle indagini pittoriche.

Dietro, anzi dentro i dipinti e gli affreschi dei più grandi maestri della pittura sono presenti i più svariati derivati vegetali e animali, molto spesso custoditi nel segreto di quei meravigliosi colori che non smettono mai di incantare: l’accecante giallo di Van Gogh, le ombre di Michelangelo, l’indefinibile blu di Picasso, lo sforzo oro di Klimt, in ogni cromia si nasconde una insondabile miscela chimica di natura organica. Senza considerare che il più delle volte, indipendentemente dalle miscele adoperate per creare i colori, sono di natura organica i leganti, collanti e siccativi utilizzati per fissare i colori sulle superfici da dipingere.

I componenti pittorici di tipo organico sono caratterizzati da un’enorme variabilità chimica, sono presenti in quantità esigue e sono fortemente affetti da problemi di alterazione. Infatti, in generale, la caratterizzazione e lo studio del sistema proteico sono piuttosto complessi, poiché a differenza del genoma, che può essere considerato virtualmente statico, il proteoma cambia continuamente introducendo drastiche modificazioni nella composizione di diversa natura; ad esempio la formazione di radicali liberi per azione della radiazione UV può indurre reazioni con le funzionalità libere degli amminoacidi nei peptidi formando complessi metallici con i pigmenti e siccativi inorganici.

Da sottolineare che l’individuazione della componente proteica in un’opera pittorica, conduce anche alla conoscenza delle tecniche di esecuzione, alla comprensione dell’evoluzione degli stili pittorici, alla determinazione dei parametri che ne permettono un’autenticazione; inoltre identificare eventuali alterazioni relative al contenuto vitale, ovvero organico e proteico, presenti nei materiali pittorici diventa un compito sempre più importante per valutare e progettare delle strategie di intervento.

L’approccio proteomico può inoltre condurre ad importanti scoperte nell’ambito delle ricostruzioni ecologiche, delle paleopatologie, delle paleodiete e l’organizzazione civile della popolazione d’interesse, sottoponendo all’indagine sia manufatti archeologici di uso quotidiano, che reperti di ossa e/o denti umani e di origine animale.

Esistono alcuni studi condotti sulle ceramiche in contesti archeologici che dimostrano la forte tendenza delle proteine di legarsi alle matrici ceramiche e di rimanere nelle stesse per lunghi periodi di tempo. Le procedure proteomiche vantano la possibilità di individuare le proteine anche se la disponibilità del campione è ridotta (dell’ordine dei nanometri) e forniscono un’identificazione precisa della sequenza peptidica, definendone l’impronta digitale.

La presenza nelle matrici ceramiche di alcune proteine piuttosto che altre, può indurre al riconoscimento non solo del tipo di nutrimento, individuando la paleodieta dell’individuo o del gruppo di individui a cui appartiene il manufatto, ma anche la tipologia di animale, ad esempio, e la sua specie, portando ad affinare le conoscenze relative alla fauna che occupava il territorio in un certo periodo archeologico.

Aldilà delle analisi condotte sui manufatti di uso quotidiano (es. ceramiche per la cottura di cibi, utensili utilizzati per la caccia, ecc…), l’indagine proteomica può essere condotta direttamente sui reperti.

Un’altra rilevante applicazione della proteomica riguarda l’identificazione quando il riconoscimento non è possibile su base morfologica: un ritrovamento di enormi quantità di ossa, ad esempio ossa animali, deposte in maniera casuale, non può essere ricostruito se non con un approccio scientifico che permetta di discriminare inequivocabilmente ogni reperto osseo e di attribuirlo ad una specie ben definita.

Un ultimo aspetto da non trascurare è la possibilità di datare i reperti archeologici, con metodi del tutto innovativi e che possono fornire interessanti scoperte. Esistono già dei metodi che si basano sull’identificazione degli amminoacidi come il metodo della racemizzazione. Esso si basa sul fatto che negli organismi viventi è presente soltanto la forma levogira degli amminacidi che inizia a diventare destrogira dopo la morte, fino a raggiungere uno stato di equilibrio tra i due isomeri ottici, nel quale la luce non sarà più deviata. Il metodo della racemizzazione mette in relazione il rapporto tra la concentrazione dei due enantiomeri con il tempo.

Oltre a questo metodo si può pensare di applicare le strategie proteomiche procedendo con uno studio approfondito sulle modificazioni che subiscono le proteine con l’avanzare del tempo servendosi di invecchiamenti simulati accelerati, verificati e confrontati a fini di calibrazione. con quelli naturali

Note sulla chimica del tabacco

In evidenza

Luigi Campanella ex Presidente SCI

Le prime manifatture del tabacco risalgono agli anni 1712 e 1743. Prima di queste due date si conoscevano soltanto singole operazioni:essiccazione e macinazione.Il Laboratorio Chimico dei Monopoli di Stato in via della Luce a Trastevere,Roma,deve essere invece considerato la prima istituzione scientifica statale impegnata nel settore del tabacco.

La prima applicazione della Chimica all’industria del tabacco risale ad oltre un secolo dopo la prima manifattura, precisamente al 1877, ma in realtà non portò a risultasti significativi e comunque di un qualche interesse.

Le prime reazioni chimiche di rilievo trattate nel settore del tabacco con metodo scientifico, un vero e proprio salto di qualità rispetto al passato risalgono a Cannizzaro (1893), chimico, scienziato, patriota, senatore.

La reazione che porta il suo nome è la ben nota

         Aldeide benzoica + formaldeide (in ambiente di idrossido di sodio)——-formiato di sodio (o acido formico) + alcool benzilico

A Cannizzaro si deve peraltro anche la determinazione dei pesi atomici di 31 elementi.Tra i suoi studi più significativi quelli sulle condizioni igienico sanitarie nelle solfatare,nelle industrie dei fiammiferi,nella stessa industria del tabacco..Cannizzaro ha svolto anche ricerche nell’analisi dei tabacchi.delle sostanze impiegate nella sua manifattura,dei suoli sui quali la pianta viene coltivata,nonché sugli indicatori a contrasto delle frodi. Le innovazioni a lui dovute nell’industria del tabacco sono tre: fermentazione, lavaggio, macerazione. Per quanto riguarda la fermentazione enzimatica su tabacco essiccato (T=30-60 °C,30-40 gg) l’amido viene ossidato a CO2,si ottengono come prodotti secondari acido acetico,composti amidici e NH3,con perdita di nicotina, nitrato, acidi organici e materia grassa.

La sostanza del tabacco sottoposta ad analisi chimica elementare risulta composta da C,H,O,gruppi acidi ( acido oleico, stearico, palmitico), gruppi alcoolici (glicerolo); risulta inoltre non polare, insolubile in acqua,con densità pari a 0,90-0,98 g/cc. L’analisi chimica rivela anche carbonato di calcio (7-65%) nel residuo insolubile in acqua,la presenza di sali organici (probabilmente per l’addizione che si fa di citrato, malato, tartrato) e quella di carbonato di potassio (1-30%) dopo la combustione.(1 h,circa) .Con analisi qualitative molto accurate è possibile anche evidenziare tracce di numerosi altri composti,quali acido solforico,acido fosforico,acido nitrico,acido cloridrico,anidride solforosa,idrossido di calcio e di sodio,silice.,oltre ovviamente a quanto già detto prima,in particolare la nicotina.E’ questa la componente più rilevante: si tratta di un liquido trasparente, leggermente giallo,di sapore acre ed odore simile a quello della piridina, igroscopico (+177% di acqua all’aria,persa a 150°C),.di densità 1.01, capace di deviare il piano della luce polarizzata verso sinistra e che si accumula nel ciclo vegetativo, con carbonio % fra 0,2 e 10.

A seconda del contenuto in carbonio distinguiamo tabacchi forti con contenuto % in carbonio fra 3 e 10,e tabacchi leggeri con contenuto % in carbonio minore di 3.La nicotina viene estratta per distillazione che può così essere schematizzata

Matrice ____H2SO4 —-evaporazione —-carbonato di ammonio   nicotina———solubilizzazione in alcool etilico——-distillazione

Un’alternativa è il metodo di Schloesing che si basa sulla insolubilizzazione in NaCl della nicotina libera,conseguente precipitazione, dissoluzione in etere e soluzione di carbonato di potassio con ripartizione fra le due fasi e confronto con un tabacco di riferimento per il valore % di nicotina,da fornire come caratteristica.

Esiste anche un terzo metodo,più complesso, ma anche più accurato. Si tratta del Metodo di Pezzolato che si basa sulla distillazione in corrente di vapore acqueo della nicotina liberata per idrolisi basica e poi fissaggio della stessa su acido solforico che viene titolato.

Si può concludere che la chimica ha avuto un ruolo e lo conserva anche oggi nell’industria manifatturiera e nella caratterizzazione dei tabacchi, che nel tempo questa partecipazione si è evoluta da metodi empirici a di natura organolettica a metodi quantitativi affidabili, che ancora si registra una certa carenza di dati sostenuti statisticamente, che per il futuro è da auspicare una standardizzazione delle metodiche analitiche riferite al tabacco.

Si veda anche :

http://media.accademiaxl.it/memorie/S5-VXXXIII-P2-2009/Lenci451-463.pdf

Moda sostenibile.

In evidenza

Luigi Campanella, ex Presidente SCI

L’aggettivo sostenibile è usato ed abusato, talvolta anche a sproposito. Ogni campo dell’attività umana si compiace di essere definito sostenibile: dal turismo alla produzione, dalla pratica alla sicurezza, dall’economia alla medicina.

Oggi vi voglio proporre un settore a cui forse pochi pensano per abbinare ad esso l’aggettivo in questione ed al quale l’aggettivo sostenibile si adatta perfettamente: parlo della Moda sostenibile.

Si tratta in pratica di definire le linee guida sui requisiti eco-tossicologici per gli articoli di abbigliamento, pelletteria, calzature ed accessori Tali linee si devono intendere applicate al prodotto finito ed ai materiali componenti e rivolti a quanti contribuiscono alla sua ideazione, realizzazione, distribuzione commercializzazione. Il fine è l’introduzione ed evoluzione di pratiche virtuose e sostenibili attraverso una corretta gestione dell’utilizzo delle sostanze chimiche nella filiera produttiva per garantire sugli articoli prodotti standard di sicurezza a beneficio dei consumatori

I riferimenti non possono che essere i principali regolamenti e leggi internazionali,a partire in questo periodo dal REACH, ma non solo: si pensi al CPSIA americano, ed agli standard cinesi e giapponesi ed i principali standard tecnici internazionali

Nell’ambito di utilizzo delle sostanze chimiche potenzialmente pericolose bisogna distinguere fra quelle che risultano ristrette sull’articolo e quelle che invece compaiono nel processo produttivo. Peraltro l’utilizzo delle sostanze nelle filiere produttive,chimiche e manifatturiere,può essere molto diverso in relazione alla quantità,alle miscele che si producono,alla tossicità,ai cicli lavorativi, alle macchine utilizzate.

Le sostanze chimiche in una filiera tessile possono svolgere fino ad 80 funzioni (es. ammorbidente, antimacchia, antipiega, batteriostatico, candeggiante ,detergente ,fissatore , disperdente, enzima proteasi, impermeabilizzante, ritardante, lubrificante, schiumogeno, uv assorbente …).

I coloranti, nello specifico, sono divisi in classi ed ognuna è ricca di composti finalizzati per l’uso in base al tipo di tessuto da trattare.

I composti chimici di base utilizzati nella filiera tessile sono di natura diversa:acidi (acetico, formico, solforico, cloridrico, ossalico), basici (ammoniaca, sodio idrossido, calcio idrossido), estratti vegetali (castagno, mimosa…..), depilanti (sodio solfidrato, sodio solfuro), concianti minerali (solfato basico di cromo, sali di Al, Zr, Ti, Fe), concianti organici (glutaraldeide, oxazolidina, sali di fosfonio)

Gli approcci adottati sono 2.

Proattivo: considera i limiti di presenza di residui di sostanze negli articoli

Avanzato : considera richieste di settore avanzate come obiettivi da raggiungere

Per ogni tipo di composto sono fissati dei limiti di presenza nel tessuto o prodotto finale e nell’impianto produttivo e dei metodi ufficiali ed accreditati di analisi.

Nota del postmaster: si vedano anche articoli prtecedenti sul medesimo tema:

https://ilblogdellasci.wordpress.com/2017/02/15/chimicamente-alla-moda-2/

https://ilblogdellasci.wordpress.com/2015/08/10/la-chimica-e-sempre-piu-di-moda-negli-istituti-tecnici-2-parte/

 

Open Science in Europa.

In evidenza

Luigi Campanella

Ho parlato di Open Science in varie occasioni,in particolare ricordo a tutti la Tavola Rotonda in sede SCI del luglio 2016 nella quale furono discussi tutti gli aspetti di quella che è divenuta un’esigenza,una richiesta,quasi un diritto:rendere disponibili i risultati delle ricerche sì da consentire anche alle comunità scientificamente più deboli di crescere.

Leggo in questi giorni con piacere che sull’argomento si è mossa anche la Commissione Europea. La Piattaforma per una Politica di Open Science (OSPP) è costituita da un Gruppo di 25 esperti di alto livello che rappresentano i vari stakeholders coinvolti, quindi università, Enti di Ricerca, accademie, associazioni culturali riconosciute, editori, biblioteche, piattaforme sulla Open Science.

L’obiettivo principale della OSPP è consigliare la Commissione Europea sullo sviluppo e l’implementazione della Open Science.Il gruppo si è riunito già 3 volte. Il primo incontro è stato meramente introduttivo, mentre i successivi 2 sono stati focalizzati su temi quali la Scienza per i Cittadini, la Rete Europea di Open Science, le Pubblicazioni ad accesso libero.

La prima linea guida che è venuta da OSPP ha riguardato Horizon 2020 chiedendo che tutti i lavori scientifici prodotti in tale ambito siano ad accesso libero, con sanzioni a carico degli inadempienti.

La seconda linea guida ha invece proposto la messa disposizione dei ricercatori che vogliano pubblicare ad accesso libero i propri lavori di un posto dove pubblicare dopo avere superato il vaglio dei referee. Questa opportunità ha un costo con il conseguente problema di chi se l’accolla.

Un punto importante discusso anche in un incontro della Piattaforma riguarda le differenze fra discipline scientifiche, umanistiche, economiche riguardo l’accettazione ed il supporto all’OPEN Science. Infine si è discusso di modelli imprenditoriali sostenibili, assolutamente necessari per evitare che la Open Science venga affidata al volontarismo.

si veda https://ec.europa.eu/research/openscience/index.cfm

 

Tossicità e prove su animali: a che punto siamo?

In evidenza

Luigi Campanella, ex presidente SCI

Gli studi tossicologici su sistemi bersaglio sono generalmente condotti utilizzando differenti dosi di tossico capaci di coprire un largo intervallo di concentrazione. I risultati di ogni studio mostreranno generalmente, ma non sempre, effetti dannosi ad alte dosi, ed effetti lievi a basse dosi. Se la sostanza è tossica sarà così identificata la dose alla quale gli effetti dannosi compaiono (livello di effetto EL). La natura e la severità degli effetti osservati varierà con il tipo di test, il tempo di esposizione, la specie bersaglio il che mette in discussione qualunque trasferimento conclusivo da una specie ad un’altra. Lo studio identificherà anche la dose massima alla quale non si osservano effetti (livello di nessun effetto osservato NOEL). Così da studi di tossicità condotti in modo diverso potranno risultare differenti valori di NOEL: la valutazione del rischio dovrebbe basarsi sullo studio più sensibile che fornisce il minimo valore di NOEL. Qualche volta il termine NOEL è sostituito da NOAEL dove la lettera A sta per avverso, indicando con essa il carattere dell’effetto, rispetto ad un effetto non nocivo.

I risultati di studi di tossicità possono essere usati in due modi diversi: per predire livelli sicuri di esposizione dell’uomo e per predire livelli potenzialmente tossici e la natura probabile degli effetti dannosi.

Nel primo caso i risultati degli studi di tossicità possono essere usati per predire la più elevata quantità di un tossico assorbito su base giornaliera da un essere umano senza alcun danno sostanziale. Talvolta tale quantità viene riferita all’unità di peso del soggetto e viene assunta come pari al NOEL diviso per 100: ciò al fine di una maggiore garanzia a protezione degli esposti, tenuto conto che gli esseri umani possono essere più sensibili ai tossici degli animali utilizzati nei test di tossicità a causa di differenze tossicocinetiche e tossicodinaniche nell’iter di un tossico (adsorbimento, metabolizzazione, escrezione per la tossicocinetica, attività contro la cellula, i tessuti, gli organi per la tossicodinamica).

Nel secondo caso i risultati degli studi della tossicità possono essere usati per predire la natura di effetti nocivi che si possono registrare negli esseri umani ed a quali livelli di esposizione tali danni si possano registrare. Molti tipi di effetto nocivo per un particolare tossico si osservano soltanto al di sopra di una certa dose, il cui valore però può variare al variare della specie e della durata dell’esposizione.

Per la maggior parte degli effetti tossici prodotti da un particolare composto c’è un valore di esposizione al di sotto del quale gli effetti nocivi non si osservano. A basse esposizioni il corpo può tollerare alcuni disturbi alle sue funzioni biochimiche e fisiologiche senza alcun segnale o sintomo di malattia. Talora l’organismo è capace di rimediare ad alcuni danni derivati dal contatto con alcuni composti purché questo sia limitato nel tempo, talaltra tale risanamento non può avvenire, il che si traduce in danno permanente e lunghe malattie. Quando i danni sono di natura genetica al DNA ed ai cromosomi o peggio portano a forme di cancro per danneggiamento del DNA si parla di effetti genotossici o carcinogenici. Questi effetti possono essere rilevati mediante test in vitro, ad esempio esponendo batteri ai tossici da testare (test di Ames) o cellule isolate animali o umane al tossico stesso. Se risultano effetti genotossici in vitro, si passa ai test in vivo su animali per confermare o meno i risultati in vitro. Il danno al DNA è un evento di tutti i giorni (si pensi all’esposizione alla componente ultravioletta dello spettro solare, all’esposizione ai radicali liberi dell’ossigeno, alla divisione cellulare) cosicché il nostro organismo deve porvi rimedio con provvedimenti ed iniziative che si ripetono per milioni di volte al giorno. Questi studi hanno dimostrato che danni al DNA possono prodursi anche a dosi molto basse, crescendo ovviamente nettamente al crescere della dose. Questi campioni vengono definiti positivi, nel senso che producono danno genotossico. Ad oggi non è possibile definire livelli di nessun effetto per i composti chimici positivi. I danni non riparati a cellule e DNA possono avere due conseguenze negative: possono provocare divisione e mutazione cellulare. I danni al DNA non necessariamente devono portare a mutazioni cellulari. Gli effetti cancerogenici vengono osservati e misurati esponendo animali, generalmente topi o ratti di età giovane a dosi giornaliere di tossico esaminando il numero ed il tipo di tumori che si sviluppano ma le conclusioni di tale tipo di approccio soffrono di accuratezza in quanto riferite a specie diverse da quelle che si intende proteggere, l’uomo. C’è infine da osservare che l’esposizione a dosi quanto si voglia piccole, se anche non produce alcun effetto nel tempo breve di fatto lo produce certamente nel lungo, lunghissimo tempo; questo tipo di rilevazione per motivi pratici non è di reale esecuzione. Per i composti cancerogenici differenti approcci ci dicono se ci sia un reale rischio di cancro ai valori di esposizione che realisticamente possono essere del tipo di quelli incontrati dagli esseri umani. Tali approcci si basano usualmente su curve dose/risposta, ottenute durante test animali. Queste curve relazionano l’incidenza del cancro alle variabilità delle dosi giornaliere assunte per tutta la vita.

Una varietà di modelli matematici può essere applicata alla curva dose-risposta per arrivare ad una stima del rischio. I modelli matematici sono generalmente considerati conservativi, fornendo una stima del rischio che non soltanto eccede sul fronte della sicurezza, ma può considerevolmente sovrastimare il rischio probabile per gli esseri umani. A causa delle limitazioni nei test sperimentali di cancerogenità animale e nei modelli, alcuni responsabili del rischio non vedono nell’approccio in precedenza indicato un’appropriata via per la stima del rischio umano. Se un composto si rivela genotossico tali responsabili possono decidere che l’esposizione degli esseri umani ad esso dovrebbe essere bassa quanto ragionevolmente prevedibile. Misure adeguate devono essere assunte per ridurre o eliminare l’esposizione. È evidente che i limiti fissati su tali basi possono implicare rischi diversi per sostanze di differente attività.

I contrasti fra diverse posizioni a riguardo dell’uso di animali da esperimento forse potrebbero essere composti se i modelli predittivi sulla tossicità umana si basassero non solo sulle risposte all’attività dei composti testati in vitro, ma anche su dati strutturali relativi a tali composti: un recente studio di Ruili Huang e coll. (R. Huang et al., “Modelling the Tox21 10 K chemical profiles for in vivo toxicity prediction and mechanism characterization,” Nature Communications, doi:10.1038/ncomms10425, 2016.) ha evidenziato l’importanza della correlazione struttura/attività; Ruili Huang è capo di un gruppo di informatici allo NCATS; insieme con i suoi colleghi hanno analizzato 10.000 diversi composti attraverso 30 diversi metodi automatici , basati su analisi cellulare (cell based analisys).

“The system is very efficient,” ha dichiarato Huang a Huang The Scientist. We can test all the chemicals at 15 different concentrations each and in three independent experiment runs in one week. With animal testing, this would take years.”

L’apparecchio usato per i test automatici si chiama TOX21, una sorta di analizzatore robot e i valori generati dai test sono stati quasi 50 milioni; su questa ampia base le previsioni del comportamento basate sul rapporto struttura-proprietà sono state molto precise; Huang spera di poter allargare le prove ad altri 80.000 composti.

Analisi di inchiostri

In evidenza

Luigi Campanella, ex Presidente SCI

Sono stato di recente interpellato per un problema molto interessante : la datazione dei documenti e delle relative firme. Si tratta di un lavoro difficile: ritengo utile postare quanto ho scritto in attesa di commenti migliorativi in favore della verità e contro le falsificazioni documentarie.

La letteratura internazionale riporta che, dal momento della sua deposizione sul supporto cartaceo, un inchiostro subisce una serie di processi chimici (evaporazione del solvente, polimerizzazione della resina, ossidazione dei componenti cromatici), comunemente indicati come “invecchiamento”. Uno dei risultati pratici dell’invecchiamento è una continua riduzione della solubilità (estraibilità) dell’inchiostro nei confronti di una prima azione di un solvente debole e successivamente di un solvente forte.

La valutazione del grado di estraibilità costituisce pertanto un indice del grado di invecchiamento di una scrittura, e quindi della data reale di produzione della scrittura medesima, che trova ampia applicazione nelle analisi forensi.

Il rapporto tra la quantità di inchiostro estratta dal solvente debole e la quantità totale di inchiostro (estrazione di solvente debole + solvente forte) è indicativo della data di produzione di una scrittura all’interno del periodo di maturazione dell’invecchiamento stesso, esaurito il quale non si riscontrano ulteriori modificazioni.

L’andamento del processo di invecchiamento è tale per cui la sensibilità della tecnica è tanto maggiore quanto minore è il tempo trascorso dalla produzione della scrittura all’analisi. Trattasi di un metodo distruttivo che si limita all’applicazione solamente a taluni pigmenti di inchiostro di penna (tipicamente di tipo oleoso come nel caso di una penna a sfera) e non può dare una risposta “accurata” riguardo alla datazione. In alcuni lavori (bibliografia 13) si conclude, proprio sulla base di 2 differenti approcci (uno lento ed uno veloce) che forniscono risultati significativamente diversi, sulla relativa impossibilità di datazione accurata degli inchiostri deposti.

In ogni caso è pressoché impossibile stabilire se due diverse scritture siano state apposte nell’arco di breve tempo l’una dall’altra (ore o giorni).È possibile invece la sequenza temporale dei tratti grafici che stabilisce se una scrittura, ad esempio una firma, è stata apposta prima o dopo un’altra. Però questa metodologia è possibile solo in presenza di sovrapposizione dei tratti delle due scritture (olografia conoscopica).

Dalla letteratura emerge anche come la datazione dei documenti manoscritti sia sempre molto approssimativa e non sia possibile esprimere mai un parere di certezza tecnica e ciò per svariati motivi, quali la mutazione degli inchiostri (pigmentazione) e dell’attrezzo scrittorio, dell’esposizione del documento in esame a fonti di calore, raggi solari, caldo, freddo, fonti di luce, agenti atmosferici, ecc. che peraltro interferiscono in modo diverso al variare del tipo di inchiostro.Se, ad esempio, un documento manoscritto con penna a biro viene esposto ai raggi solari, o posto in un forno, viene invecchiato di molti anni. Inversamente nel caso di collocazioni in freezer.

L’olografo commerciale (Conopoint3 della Ofir) è in pratica un profilometro.

Comunque la Chimica Analitica ha applicato al problema metodi più sofisticati. L’analisi degli inchiostri può essere infatti effettuata con spettrometria Raman e spettroscopia di fluorescenza a raggi X (XRF), impiegando sia strumenti portatili, sia strumenti da banco. La spettrometria Raman fornisce informazioni sui composti impiegati, la spettroscopia XRF, identifica gli elementi-chiave e dà informazioni addizionali sugli elementi presenti in tracce, permettendo così di evidenziare le differenze di distribuzione elementare tra zone diverse del manoscritto. Anche l’HPLC, la cromatografia liquida a fasi invertite in qualche caso con pre-estrazione in fase solida, e la Gas-massa (GC-MS), sono state applicate all’analisi chimica degli inchiostri per risalire dalla loro composizione, alterata rispetto all’originale dal processo di invecchiamento, alla data di applicazione. Sono anche noti metodi ancor più articolati come quello di usare diagrammi ternari costruiti per i coloranti presenti nell’inchiostro, ma anche in questo caso sono riportate datazioni errate per campioni esposti per tempi prolungati alla luce di lampade a fluorescenza od a quella solare o a fonti di calore. Anche metodi più semplici come la spettrofotometria UV-Visibile o i.r. con misure di assorbanza, l’analisi elettrostatica (ESDA) hanno trovato applicazioni. In studi più recenti anche il microscopio elettronico e la datazione al radio carbonio (ovviamente nel caso di documenti antichi) ha fornito risultati di un certo interesse.

applicazione dell’olografica conoscopica. http://www.ilgrafologo.it/doc/29-34.PDF

Si è già accennato ad un altro metodo, l’olografia conoscopica che è in grado di effettuare delle “scansioni” non a contatto con elevatissima precisione (micrometrica) e ripetibilità del campione oggetto della misura. Il file che viene generato è composto dalla terna X-Y-Z di ogni singolo punto campionato, il che significa che anche nel caso di una scansione di un’area limitata possiamo dare origine ad un file composto anche da qualche milione di punti X-Y-Z, file che viene anche chiamato in gergo “nuvola di punti”.Occorre inoltre notare che il sistema rileva la mappa topografica del campione, conseguentemente non ha alcuna importanza il colore dell’inchiostro o della carta e tantomeno la mano o le mani che hanno tracciato i tratti. È anche possibile rilevare dei solchi che sono stati marcati e poi cancellati;l’apparecchiatura 3D consente di effettuare delle misure inerenti alla profondità dei solchi, alla larghezza degli stessi, ecc.

Due altri aspetti che rappresentano elementi di incertezza e che devono essere valutati riguardano la carta che invecchiando, dal momento della sua fabbricazione, è soggetta anch’essa ad un processo di invecchiamento (produzione di gruppi carbossilici e frammentazione della catena cellulosica) che potrebbero influenzare il processo estrattivo.Inoltre nella costituzione della carta sono presenti ioni metallici in traccia, peraltro distribuiti casualmente e disomogeneamente: anche questi possono influenzare il processo estrattivo ostacolandolo

CONCLUSIONI

La determinazione dell’età di un inchiostro deposto è problema complesso e di non semplice soluzione in quanto il processo di invecchiamento risulta in misura determinante influenzato dalle condizioni di conservazione (temperatura, illuminazione, ambiente chimico) nonché dall’invecchiamento della carta e dalla sua composizione.Il metodo dell’estrazione risente in particolare di queste dipendenze, anche se è fra quelli più impiegati.La correlazione fra maturazione e completamento del processo di invecchiamento ed estraibilità alla base di tale metodo- applicato al caso in questione -ha anche una dipendenza dalla cinetica del processo stesso e dalla dificoltà di definire uno standard. Metodi più sofisticati sono certamente in grado di fornire risposte più accurate (a questo proposito rispetto a quanto riportato nel post c‘è da osservare che non si tratta di problemi di precisione, che è invece fondamentale per definire gli intervalli di incertezza, necessari per dare significatività alle misure al fine di dare significatività ad eventuali differenze), ma richiederebbero campionamenti nuovi (visto il carattere distruttivo del metodo per estrazione), introducendo quindi un ulteriore elemento di incertezza.

BIBLIOGRAFIA DI RIFERIMENTO

  1. Ellen: Scientific examination of Documents: Methods and Techniques. CRC Taylor & Francis Publishers; International Forensic Science and Investigation Series; New York, NY, USA, 2005.
  2. Giuntini, F. Lucarelli, P.A. Mandò, W. Hooper, P.H. Barker, “Galileo’s writings: chronology by PIXE”, Nucl. Instr. & Meth. B, 95, 389 (1995).
  3. Andrasko J., Changes in Composition of Ballpoint Pen Inks on Aging in Darkness, SKL, National Laboratory of Forensic Science, Linkoping, Swed, Journal of Forensic Sciences (2004), 47(2), 324-327.
  4. Mitchell C. Ainsworth, Estimation of the age of ink in writing, International Journal of Forensic Forensic Document Examiners (1995), 1(1), 56-62.
  5. Brunelle RL, Cantu A., A Critical Evaluation of Current Ink Dating Techniques, Bur. Alcohol, Tob. Firearms. Rockville, MD, USA. Journal of Forensic Sciences (1987), 32(6), 1522-36.
  6. Valery N. Aginsky, Writing media and documents, Riley, Welch and Aginsky, Forensic Documents Examinations, Inc., Lansing, MI, USA, Handook of Analytical Separations (2008), 6(Forensic Science), 923-941. Publisher: Elsevier B.V.
  7. LaPorte Gerald M, Wilson Jeffrey D, Cantu Antonio A, Mancke S Amanda, Fortunato Susan L The identification of 2 – phenoxyethanol in ballpoint   inks   using   gas   chromatography / mass   spectrometry — relevance to ink   dating.   Journal of forensic sciences (2004), 49(1), 155-9.
  8. Valery N. Aginsky, A microspectrophotometric method for dating   ballpoint   inks –a feasibility study. Journal of Forensic Sciences (1995), 40(3), 475-8.
  9. Andrasko Jan SKL, Changes in composition of ballpoint pen inks on aging in darkness, National Laboratory of Forensic Science, Linkoping, Sweden Journal of forensic sciences (2002), 47, (2), 324-7.
  10. Wang, Yan; Yao, Lijuan; Zhao, Pengcheng; Wang, Jinghan; Wang, Yanji. Determination of the writing   age of blue   ballpoint   ink by gas   chromatography. Sepu (2005), 23(2), 202-204. Publisher: Kexue Chubanshe.
  11. Hofer, R. Dating of ballpoint   pen   ink. Journal of Forensic Sciences Division , Document Laboratory, Zurich Canton Police, Zurich, Switz, (2004), 49(6), 1353-1357.
  12. Lociciro, S.; Dujourdy, L.; Mazzella, W.; Margot, P.; Lock, E., Dynamic of the aging of ballpoint pen   inks : quantification of phenoxyethanol by GC – MS. Institut de Police Scientifique et de Criminologie, University of Lausanne, Lausanne-Dorigny, Switz.   Science & Justice (2004), 44(3), 165-171. Publisher: Forensic Science Society,
  13. Wilson, Jeffrey D., LaPorte, Gerald M., Cantu, Antonio A., Differentiation of black   gel   inks   using   optical and chemical   techniques, Forensic Services Division, Questioned Document Branch, United States Secret Service, Washington, DC, USA.   Journal of Forensic Sciences (2004), 49(2), 364-370.
  14. Wild Eva Maria, Stadler Peter, Bondar Maria, Draxler Susanne, Friesinger Herwig, Kutschera Walter, Priller Alfred, Rom Werner, Ruttkay Elisabeth, Steier Peter, New   chronological   frame for the Young   Neolithic   Baden   Culture in Central   Europe ( 4th   millennium   BC ), Vienna Environmental Research Accelerator (VERA), Institut fur Isotopenforschung und Kernphysik, Universitat Wien, Vienna, Austria.   Radiocarbon (2001), 43(2B), 1057-1064.
  15. Kher Ashwini A., Green Elinore V., Mulholland Mary I., Evaluation of principal   components   analysis with high – performance   liquid chromatography and photodiode   array   detection for the forensic   differentiation of ballpoint   pen   inks. Department of Chemistry, Materials and Forensic Science, University of Technology, Sydney, Australia.   Journal of Forensic Sciences (2001), 46(4), 878-883.
  16. Puchegger, S.; Rom, W.; Steier, P., Automated   evaluation of 14C   AMS  measurements.      Vienna Environmental Research Accelerator, Institut fur Isotopenforschung und Kernphysik der Universitat Wien, Vienna, Austria.   Nuclear Instruments & Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms (2000), 172 274-280.
  17. Carla Vogt,1 Ph.D.; Andreas Becker,1 B.Sc.; and Jürgen Vogt,2 Ph.D., investigation of ball point pen inks by capillary electrophoresis (CE) with UV/Vis absorbance and laser induced fluorescence detection and particle induced X-Ray emission (PIXE), Institute of Analytical Chemistry, University of Leipzig, Germany, Journal of Forensic Sciences (1999), 44(4), 819-831.
  18. Aginsky, Valery N., Measuring   ink extractability as a function of age – why the relative   aging   approach is unreliable and why it is more correct to measure   ink   volatile   components than dyes, American Academy of Forensic Sciences, New York, NY, USA.   International Journal of Forensic Document Examiners (1998), 4(3), 214-230.
  19. Stuiver, Minze; Reimer, Paula J.; Bard, Edouard; Beck, J. Warren; Burr, G. S.; Hughen, Konrad A.; Kromer, Bernd; McCormac, Gerry; Van Der Plicht, Johannes; Spurk, Marco, INTCAL98   radiocarbon   age   calibration , 24,000-0 cal BP, Quaternary Isotope Laboratory, University of Washington, Seattle, WA, USA.   Radiocarbon (1998), 40(3), 1041-1083.
  20. Wild, Eva; Golser, Robin; Hille, Peter; Kutschera, Walter; Priller, Alfred; Puchegger, Stephan; Rom, Werner; Steier, Peter. First   14C results from archaeological and forensic studies at the Vienna   environmental research accelerator. Institut fur Radiumforschung und Kernphysik, Vienna Environmental Research Accelerator, Universitat Wien, Vienna, Austria. Radiocarbon (1998), 40(1), 273-281.
  21. Cantu, Antonio A., A sketch of analytical   methods for document dating Part I. The static approach: Determining age independent analytical profiles. International Journal of Forensic Document Examiners (1995), 1(1), 40-51.
  22. Aginsky, Valery N. Some   new   ideas for dating   ballpoint   inks — a   feasibility   study. Interior, Moscow, Russia, Journal of Forensic Sciences (1993), 38(5), 1134-50.
  23. Stewart, Larry F. Ballpoint   ink age determination by volatile   component   comparison – a preliminary study. Forensic Serv. Div., U. S. Secret Serv., Washington, DC, USA. Journal of Forensic Sciences (1985), 30(2), 405-11.
  24. Burleigh, Richard; Baynes-Cope, A. D.,   Possibilities in the dating of writing   materials and textiles, Lab., Br. Mus., London, UK, Radiocarbon (1983), 25(2), 669-74.
  25. Brunelle, Richard L.; Pro, Maynard J. Systematic   approach to ink   identification. Firearms Div., Intern. Revenue Serv., Washington, DC, USA, Journal – Association of Official Analytical Chemists (1972), 55(4), 823-6.
  26. Hofer, R. Dating of ballpoint   pen   ink, Forensic Science Division, Document Laboratory, Zurich Canton Police, Zurich, Switz, Journal of Forensic Sciences (2004), 49(6), 1353-1357.
  27. L. Brunelle & K.R. Crawford: Advances in the forensic analysis and dating of writing ink. C.C. Thomas Publisher, Springfield, IL, USA, 2003

Analisi chimica oggi.

In evidenza

Luigi Campanella, ex Presidente SCI

Generalmente chi ricorre all’analisi chimica per un problema nuovo ritiene che, tra i tanti, esista già un metodo adatto per i suoi scopi, lo ricerca e talvolta lo adatta e lo applica personalmente; da questa acritica propensione, come si è già rilevato, possono derivare molti danni.

La chimica analitica, ben conscia di questo, ha fortemente sviluppate, e ampiamente e soddisfacentemente applicate, una filosofia e una prassi che le permettono di affrontare con sistematicità nuovi problemi conoscitivi e nuovi campi di committenza; come può essere rilevato:

  • nella cura con cui vengono affrontati i problemi del linguaggio e delle definizioni;
  • nel cosiddetto iter analitico, cioè nel percorso logico e procedurale che ogni analisi deve seguire senza omissioni e alterazioni, ossia nell’insieme coerente dei mezzi e delle operazioni che partono dalla definizione dei problemi e giungono alla soddisfacente soluzione di essi;
  • nell’organizzazione internazionale per le analisi di qualità (v. oltre).

L’iter analitico consta delle seguenti parti nel seguente ordine:

  • approccio analitico ai problemi e ai sistemi,
  • prelievo dei campioni,
  • trattamenti e separazioni,
  • taratura,
  • calibrazione,
  • misurazione,
  • valutazione dei dati sperimentali,
  • elaborazione dei dati sperimentali,
  • classificazione,
  • immagazzinamento e recupero delle informazioni.

Il risultato è la caratterizzazione chimica (compositiva, strutturale, correlativa e alterativa); ove l’operazione sia finalizzata ad una diagnosi,come ad esempio in archeologia spetterà a quest’ultima disciplina la sua utilizzazione per diagnosi e interventi, in armonia e in accordo con la caratterizzazione umanistica.

L’analisi chimica ha per oggetto un sistema, la determinazione chimica di un analita (componente o proprietà del sistema), la misurazione di una grandezza fisica del sistema. Il risultato della misurazione, la misura, è dipendente sia dall’analita che dalla matrice; una o più misure concorrono a una determinazione; una o più determinazioni costituiscono un’analisi. Si suole distinguere anche tra tecnica, metodo, procedimento e protocollo.

Per tecnica analitica si intende lo studio (con prospettive di applicazioni) delle correlazioni tra quantità di sostanza e grandezza fisica relata misurabile; essa descrive i principi e la teoria delle interazioni, le apparecchiature per generare e per definire qualitativamente e quantitativamente le energie in gioco, i rivelatori e i sensori. Esempi: tecniche ottiche e spettrali, elettrochimiche, termiche, separative, cromatografiche, isotopiche, chimiche, biologiche.

Un metodo è l’adattamento di una tecnica a una categoria di problemi e deve comprendere tutto l’iter analitico (spesso però viene riduttivamente inteso come la sua parte centrale che va dai trattamenti dei campioni alla valutazione dei risultati sperimentali); un metodo analitico descrive e prescrive le caratteristiche del laboratorio e degli operatori, i reattivi e i materiali di riferimento, le apparecchiature e i procedimenti. Un metodo (o parte di esso) con l’adeguamento a situazioni specifiche diventa procedimento; protocollo è l’insieme di istruzioni da seguire alla lettera nell’applicazione di un procedimento elevato a norma ufficiale.

Metodo non va confuso con metodologia, che è il discorso globale comprendente tutti e quattro i termini; da scoraggiare è anche l’uso dei termini metodica (si tratta di un aggettivo) e procedure (termine giuridico).

Per meglio chiarire la differenza tra misurazione e analisi si tenga presente che sei delle sette grandezze di base del Sistema Internazionale di Unità di Misura (SI): lunghezza, massa, tempo, intensità di corrente elettrica, temperatura termodinamica e intensità luminosa, sono grandezze fisiche, la settima, la quantità di sostanza è grandezza chimica. L’analisi chimica coinvolge sempre la settima grandezza e, a seconda dei casi, una o più delle altre sei; pertanto essa è sempre dipendente da grandezze fisiche e dal tipo di energia da queste definito.

Da questa premessa si può trarre ragione della classificazione dei metodi analitici basata sul tipo di energia in gioco, di cui qui appresso si riportano esempi.