Tossicità e prove su animali: a che punto siamo?

In evidenza

Luigi Campanella, ex presidente SCI

Gli studi tossicologici su sistemi bersaglio sono generalmente condotti utilizzando differenti dosi di tossico capaci di coprire un largo intervallo di concentrazione. I risultati di ogni studio mostreranno generalmente, ma non sempre, effetti dannosi ad alte dosi, ed effetti lievi a basse dosi. Se la sostanza è tossica sarà così identificata la dose alla quale gli effetti dannosi compaiono (livello di effetto EL). La natura e la severità degli effetti osservati varierà con il tipo di test, il tempo di esposizione, la specie bersaglio il che mette in discussione qualunque trasferimento conclusivo da una specie ad un’altra. Lo studio identificherà anche la dose massima alla quale non si osservano effetti (livello di nessun effetto osservato NOEL). Così da studi di tossicità condotti in modo diverso potranno risultare differenti valori di NOEL: la valutazione del rischio dovrebbe basarsi sullo studio più sensibile che fornisce il minimo valore di NOEL. Qualche volta il termine NOEL è sostituito da NOAEL dove la lettera A sta per avverso, indicando con essa il carattere dell’effetto, rispetto ad un effetto non nocivo.

I risultati di studi di tossicità possono essere usati in due modi diversi: per predire livelli sicuri di esposizione dell’uomo e per predire livelli potenzialmente tossici e la natura probabile degli effetti dannosi.

Nel primo caso i risultati degli studi di tossicità possono essere usati per predire la più elevata quantità di un tossico assorbito su base giornaliera da un essere umano senza alcun danno sostanziale. Talvolta tale quantità viene riferita all’unità di peso del soggetto e viene assunta come pari al NOEL diviso per 100: ciò al fine di una maggiore garanzia a protezione degli esposti, tenuto conto che gli esseri umani possono essere più sensibili ai tossici degli animali utilizzati nei test di tossicità a causa di differenze tossicocinetiche e tossicodinaniche nell’iter di un tossico (adsorbimento, metabolizzazione, escrezione per la tossicocinetica, attività contro la cellula, i tessuti, gli organi per la tossicodinamica).

Nel secondo caso i risultati degli studi della tossicità possono essere usati per predire la natura di effetti nocivi che si possono registrare negli esseri umani ed a quali livelli di esposizione tali danni si possano registrare. Molti tipi di effetto nocivo per un particolare tossico si osservano soltanto al di sopra di una certa dose, il cui valore però può variare al variare della specie e della durata dell’esposizione.

Per la maggior parte degli effetti tossici prodotti da un particolare composto c’è un valore di esposizione al di sotto del quale gli effetti nocivi non si osservano. A basse esposizioni il corpo può tollerare alcuni disturbi alle sue funzioni biochimiche e fisiologiche senza alcun segnale o sintomo di malattia. Talora l’organismo è capace di rimediare ad alcuni danni derivati dal contatto con alcuni composti purché questo sia limitato nel tempo, talaltra tale risanamento non può avvenire, il che si traduce in danno permanente e lunghe malattie. Quando i danni sono di natura genetica al DNA ed ai cromosomi o peggio portano a forme di cancro per danneggiamento del DNA si parla di effetti genotossici o carcinogenici. Questi effetti possono essere rilevati mediante test in vitro, ad esempio esponendo batteri ai tossici da testare (test di Ames) o cellule isolate animali o umane al tossico stesso. Se risultano effetti genotossici in vitro, si passa ai test in vivo su animali per confermare o meno i risultati in vitro. Il danno al DNA è un evento di tutti i giorni (si pensi all’esposizione alla componente ultravioletta dello spettro solare, all’esposizione ai radicali liberi dell’ossigeno, alla divisione cellulare) cosicché il nostro organismo deve porvi rimedio con provvedimenti ed iniziative che si ripetono per milioni di volte al giorno. Questi studi hanno dimostrato che danni al DNA possono prodursi anche a dosi molto basse, crescendo ovviamente nettamente al crescere della dose. Questi campioni vengono definiti positivi, nel senso che producono danno genotossico. Ad oggi non è possibile definire livelli di nessun effetto per i composti chimici positivi. I danni non riparati a cellule e DNA possono avere due conseguenze negative: possono provocare divisione e mutazione cellulare. I danni al DNA non necessariamente devono portare a mutazioni cellulari. Gli effetti cancerogenici vengono osservati e misurati esponendo animali, generalmente topi o ratti di età giovane a dosi giornaliere di tossico esaminando il numero ed il tipo di tumori che si sviluppano ma le conclusioni di tale tipo di approccio soffrono di accuratezza in quanto riferite a specie diverse da quelle che si intende proteggere, l’uomo. C’è infine da osservare che l’esposizione a dosi quanto si voglia piccole, se anche non produce alcun effetto nel tempo breve di fatto lo produce certamente nel lungo, lunghissimo tempo; questo tipo di rilevazione per motivi pratici non è di reale esecuzione. Per i composti cancerogenici differenti approcci ci dicono se ci sia un reale rischio di cancro ai valori di esposizione che realisticamente possono essere del tipo di quelli incontrati dagli esseri umani. Tali approcci si basano usualmente su curve dose/risposta, ottenute durante test animali. Queste curve relazionano l’incidenza del cancro alle variabilità delle dosi giornaliere assunte per tutta la vita.

Una varietà di modelli matematici può essere applicata alla curva dose-risposta per arrivare ad una stima del rischio. I modelli matematici sono generalmente considerati conservativi, fornendo una stima del rischio che non soltanto eccede sul fronte della sicurezza, ma può considerevolmente sovrastimare il rischio probabile per gli esseri umani. A causa delle limitazioni nei test sperimentali di cancerogenità animale e nei modelli, alcuni responsabili del rischio non vedono nell’approccio in precedenza indicato un’appropriata via per la stima del rischio umano. Se un composto si rivela genotossico tali responsabili possono decidere che l’esposizione degli esseri umani ad esso dovrebbe essere bassa quanto ragionevolmente prevedibile. Misure adeguate devono essere assunte per ridurre o eliminare l’esposizione. È evidente che i limiti fissati su tali basi possono implicare rischi diversi per sostanze di differente attività.

I contrasti fra diverse posizioni a riguardo dell’uso di animali da esperimento forse potrebbero essere composti se i modelli predittivi sulla tossicità umana si basassero non solo sulle risposte all’attività dei composti testati in vitro, ma anche su dati strutturali relativi a tali composti: un recente studio di Ruili Huang e coll. (R. Huang et al., “Modelling the Tox21 10 K chemical profiles for in vivo toxicity prediction and mechanism characterization,” Nature Communications, doi:10.1038/ncomms10425, 2016.) ha evidenziato l’importanza della correlazione struttura/attività; Ruili Huang è capo di un gruppo di informatici allo NCATS; insieme con i suoi colleghi hanno analizzato 10.000 diversi composti attraverso 30 diversi metodi automatici , basati su analisi cellulare (cell based analisys).

“The system is very efficient,” ha dichiarato Huang a Huang The Scientist. We can test all the chemicals at 15 different concentrations each and in three independent experiment runs in one week. With animal testing, this would take years.”

L’apparecchio usato per i test automatici si chiama TOX21, una sorta di analizzatore robot e i valori generati dai test sono stati quasi 50 milioni; su questa ampia base le previsioni del comportamento basate sul rapporto struttura-proprietà sono state molto precise; Huang spera di poter allargare le prove ad altri 80.000 composti.

Analisi di inchiostri

In evidenza

Luigi Campanella, ex Presidente SCI

Sono stato di recente interpellato per un problema molto interessante : la datazione dei documenti e delle relative firme. Si tratta di un lavoro difficile: ritengo utile postare quanto ho scritto in attesa di commenti migliorativi in favore della verità e contro le falsificazioni documentarie.

La letteratura internazionale riporta che, dal momento della sua deposizione sul supporto cartaceo, un inchiostro subisce una serie di processi chimici (evaporazione del solvente, polimerizzazione della resina, ossidazione dei componenti cromatici), comunemente indicati come “invecchiamento”. Uno dei risultati pratici dell’invecchiamento è una continua riduzione della solubilità (estraibilità) dell’inchiostro nei confronti di una prima azione di un solvente debole e successivamente di un solvente forte.

La valutazione del grado di estraibilità costituisce pertanto un indice del grado di invecchiamento di una scrittura, e quindi della data reale di produzione della scrittura medesima, che trova ampia applicazione nelle analisi forensi.

Il rapporto tra la quantità di inchiostro estratta dal solvente debole e la quantità totale di inchiostro (estrazione di solvente debole + solvente forte) è indicativo della data di produzione di una scrittura all’interno del periodo di maturazione dell’invecchiamento stesso, esaurito il quale non si riscontrano ulteriori modificazioni.

L’andamento del processo di invecchiamento è tale per cui la sensibilità della tecnica è tanto maggiore quanto minore è il tempo trascorso dalla produzione della scrittura all’analisi. Trattasi di un metodo distruttivo che si limita all’applicazione solamente a taluni pigmenti di inchiostro di penna (tipicamente di tipo oleoso come nel caso di una penna a sfera) e non può dare una risposta “accurata” riguardo alla datazione. In alcuni lavori (bibliografia 13) si conclude, proprio sulla base di 2 differenti approcci (uno lento ed uno veloce) che forniscono risultati significativamente diversi, sulla relativa impossibilità di datazione accurata degli inchiostri deposti.

In ogni caso è pressoché impossibile stabilire se due diverse scritture siano state apposte nell’arco di breve tempo l’una dall’altra (ore o giorni).È possibile invece la sequenza temporale dei tratti grafici che stabilisce se una scrittura, ad esempio una firma, è stata apposta prima o dopo un’altra. Però questa metodologia è possibile solo in presenza di sovrapposizione dei tratti delle due scritture (olografia conoscopica).

Dalla letteratura emerge anche come la datazione dei documenti manoscritti sia sempre molto approssimativa e non sia possibile esprimere mai un parere di certezza tecnica e ciò per svariati motivi, quali la mutazione degli inchiostri (pigmentazione) e dell’attrezzo scrittorio, dell’esposizione del documento in esame a fonti di calore, raggi solari, caldo, freddo, fonti di luce, agenti atmosferici, ecc. che peraltro interferiscono in modo diverso al variare del tipo di inchiostro.Se, ad esempio, un documento manoscritto con penna a biro viene esposto ai raggi solari, o posto in un forno, viene invecchiato di molti anni. Inversamente nel caso di collocazioni in freezer.

L’olografo commerciale (Conopoint3 della Ofir) è in pratica un profilometro.

Comunque la Chimica Analitica ha applicato al problema metodi più sofisticati. L’analisi degli inchiostri può essere infatti effettuata con spettrometria Raman e spettroscopia di fluorescenza a raggi X (XRF), impiegando sia strumenti portatili, sia strumenti da banco. La spettrometria Raman fornisce informazioni sui composti impiegati, la spettroscopia XRF, identifica gli elementi-chiave e dà informazioni addizionali sugli elementi presenti in tracce, permettendo così di evidenziare le differenze di distribuzione elementare tra zone diverse del manoscritto. Anche l’HPLC, la cromatografia liquida a fasi invertite in qualche caso con pre-estrazione in fase solida, e la Gas-massa (GC-MS), sono state applicate all’analisi chimica degli inchiostri per risalire dalla loro composizione, alterata rispetto all’originale dal processo di invecchiamento, alla data di applicazione. Sono anche noti metodi ancor più articolati come quello di usare diagrammi ternari costruiti per i coloranti presenti nell’inchiostro, ma anche in questo caso sono riportate datazioni errate per campioni esposti per tempi prolungati alla luce di lampade a fluorescenza od a quella solare o a fonti di calore. Anche metodi più semplici come la spettrofotometria UV-Visibile o i.r. con misure di assorbanza, l’analisi elettrostatica (ESDA) hanno trovato applicazioni. In studi più recenti anche il microscopio elettronico e la datazione al radio carbonio (ovviamente nel caso di documenti antichi) ha fornito risultati di un certo interesse.

applicazione dell’olografica conoscopica. http://www.ilgrafologo.it/doc/29-34.PDF

Si è già accennato ad un altro metodo, l’olografia conoscopica che è in grado di effettuare delle “scansioni” non a contatto con elevatissima precisione (micrometrica) e ripetibilità del campione oggetto della misura. Il file che viene generato è composto dalla terna X-Y-Z di ogni singolo punto campionato, il che significa che anche nel caso di una scansione di un’area limitata possiamo dare origine ad un file composto anche da qualche milione di punti X-Y-Z, file che viene anche chiamato in gergo “nuvola di punti”.Occorre inoltre notare che il sistema rileva la mappa topografica del campione, conseguentemente non ha alcuna importanza il colore dell’inchiostro o della carta e tantomeno la mano o le mani che hanno tracciato i tratti. È anche possibile rilevare dei solchi che sono stati marcati e poi cancellati;l’apparecchiatura 3D consente di effettuare delle misure inerenti alla profondità dei solchi, alla larghezza degli stessi, ecc.

Due altri aspetti che rappresentano elementi di incertezza e che devono essere valutati riguardano la carta che invecchiando, dal momento della sua fabbricazione, è soggetta anch’essa ad un processo di invecchiamento (produzione di gruppi carbossilici e frammentazione della catena cellulosica) che potrebbero influenzare il processo estrattivo.Inoltre nella costituzione della carta sono presenti ioni metallici in traccia, peraltro distribuiti casualmente e disomogeneamente: anche questi possono influenzare il processo estrattivo ostacolandolo

CONCLUSIONI

La determinazione dell’età di un inchiostro deposto è problema complesso e di non semplice soluzione in quanto il processo di invecchiamento risulta in misura determinante influenzato dalle condizioni di conservazione (temperatura, illuminazione, ambiente chimico) nonché dall’invecchiamento della carta e dalla sua composizione.Il metodo dell’estrazione risente in particolare di queste dipendenze, anche se è fra quelli più impiegati.La correlazione fra maturazione e completamento del processo di invecchiamento ed estraibilità alla base di tale metodo- applicato al caso in questione -ha anche una dipendenza dalla cinetica del processo stesso e dalla dificoltà di definire uno standard. Metodi più sofisticati sono certamente in grado di fornire risposte più accurate (a questo proposito rispetto a quanto riportato nel post c‘è da osservare che non si tratta di problemi di precisione, che è invece fondamentale per definire gli intervalli di incertezza, necessari per dare significatività alle misure al fine di dare significatività ad eventuali differenze), ma richiederebbero campionamenti nuovi (visto il carattere distruttivo del metodo per estrazione), introducendo quindi un ulteriore elemento di incertezza.

BIBLIOGRAFIA DI RIFERIMENTO

  1. Ellen: Scientific examination of Documents: Methods and Techniques. CRC Taylor & Francis Publishers; International Forensic Science and Investigation Series; New York, NY, USA, 2005.
  2. Giuntini, F. Lucarelli, P.A. Mandò, W. Hooper, P.H. Barker, “Galileo’s writings: chronology by PIXE”, Nucl. Instr. & Meth. B, 95, 389 (1995).
  3. Andrasko J., Changes in Composition of Ballpoint Pen Inks on Aging in Darkness, SKL, National Laboratory of Forensic Science, Linkoping, Swed, Journal of Forensic Sciences (2004), 47(2), 324-327.
  4. Mitchell C. Ainsworth, Estimation of the age of ink in writing, International Journal of Forensic Forensic Document Examiners (1995), 1(1), 56-62.
  5. Brunelle RL, Cantu A., A Critical Evaluation of Current Ink Dating Techniques, Bur. Alcohol, Tob. Firearms. Rockville, MD, USA. Journal of Forensic Sciences (1987), 32(6), 1522-36.
  6. Valery N. Aginsky, Writing media and documents, Riley, Welch and Aginsky, Forensic Documents Examinations, Inc., Lansing, MI, USA, Handook of Analytical Separations (2008), 6(Forensic Science), 923-941. Publisher: Elsevier B.V.
  7. LaPorte Gerald M, Wilson Jeffrey D, Cantu Antonio A, Mancke S Amanda, Fortunato Susan L The identification of 2 – phenoxyethanol in ballpoint   inks   using   gas   chromatography / mass   spectrometry — relevance to ink   dating.   Journal of forensic sciences (2004), 49(1), 155-9.
  8. Valery N. Aginsky, A microspectrophotometric method for dating   ballpoint   inks –a feasibility study. Journal of Forensic Sciences (1995), 40(3), 475-8.
  9. Andrasko Jan SKL, Changes in composition of ballpoint pen inks on aging in darkness, National Laboratory of Forensic Science, Linkoping, Sweden Journal of forensic sciences (2002), 47, (2), 324-7.
  10. Wang, Yan; Yao, Lijuan; Zhao, Pengcheng; Wang, Jinghan; Wang, Yanji. Determination of the writing   age of blue   ballpoint   ink by gas   chromatography. Sepu (2005), 23(2), 202-204. Publisher: Kexue Chubanshe.
  11. Hofer, R. Dating of ballpoint   pen   ink. Journal of Forensic Sciences Division , Document Laboratory, Zurich Canton Police, Zurich, Switz, (2004), 49(6), 1353-1357.
  12. Lociciro, S.; Dujourdy, L.; Mazzella, W.; Margot, P.; Lock, E., Dynamic of the aging of ballpoint pen   inks : quantification of phenoxyethanol by GC – MS. Institut de Police Scientifique et de Criminologie, University of Lausanne, Lausanne-Dorigny, Switz.   Science & Justice (2004), 44(3), 165-171. Publisher: Forensic Science Society,
  13. Wilson, Jeffrey D., LaPorte, Gerald M., Cantu, Antonio A., Differentiation of black   gel   inks   using   optical and chemical   techniques, Forensic Services Division, Questioned Document Branch, United States Secret Service, Washington, DC, USA.   Journal of Forensic Sciences (2004), 49(2), 364-370.
  14. Wild Eva Maria, Stadler Peter, Bondar Maria, Draxler Susanne, Friesinger Herwig, Kutschera Walter, Priller Alfred, Rom Werner, Ruttkay Elisabeth, Steier Peter, New   chronological   frame for the Young   Neolithic   Baden   Culture in Central   Europe ( 4th   millennium   BC ), Vienna Environmental Research Accelerator (VERA), Institut fur Isotopenforschung und Kernphysik, Universitat Wien, Vienna, Austria.   Radiocarbon (2001), 43(2B), 1057-1064.
  15. Kher Ashwini A., Green Elinore V., Mulholland Mary I., Evaluation of principal   components   analysis with high – performance   liquid chromatography and photodiode   array   detection for the forensic   differentiation of ballpoint   pen   inks. Department of Chemistry, Materials and Forensic Science, University of Technology, Sydney, Australia.   Journal of Forensic Sciences (2001), 46(4), 878-883.
  16. Puchegger, S.; Rom, W.; Steier, P., Automated   evaluation of 14C   AMS  measurements.      Vienna Environmental Research Accelerator, Institut fur Isotopenforschung und Kernphysik der Universitat Wien, Vienna, Austria.   Nuclear Instruments & Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms (2000), 172 274-280.
  17. Carla Vogt,1 Ph.D.; Andreas Becker,1 B.Sc.; and Jürgen Vogt,2 Ph.D., investigation of ball point pen inks by capillary electrophoresis (CE) with UV/Vis absorbance and laser induced fluorescence detection and particle induced X-Ray emission (PIXE), Institute of Analytical Chemistry, University of Leipzig, Germany, Journal of Forensic Sciences (1999), 44(4), 819-831.
  18. Aginsky, Valery N., Measuring   ink extractability as a function of age – why the relative   aging   approach is unreliable and why it is more correct to measure   ink   volatile   components than dyes, American Academy of Forensic Sciences, New York, NY, USA.   International Journal of Forensic Document Examiners (1998), 4(3), 214-230.
  19. Stuiver, Minze; Reimer, Paula J.; Bard, Edouard; Beck, J. Warren; Burr, G. S.; Hughen, Konrad A.; Kromer, Bernd; McCormac, Gerry; Van Der Plicht, Johannes; Spurk, Marco, INTCAL98   radiocarbon   age   calibration , 24,000-0 cal BP, Quaternary Isotope Laboratory, University of Washington, Seattle, WA, USA.   Radiocarbon (1998), 40(3), 1041-1083.
  20. Wild, Eva; Golser, Robin; Hille, Peter; Kutschera, Walter; Priller, Alfred; Puchegger, Stephan; Rom, Werner; Steier, Peter. First   14C results from archaeological and forensic studies at the Vienna   environmental research accelerator. Institut fur Radiumforschung und Kernphysik, Vienna Environmental Research Accelerator, Universitat Wien, Vienna, Austria. Radiocarbon (1998), 40(1), 273-281.
  21. Cantu, Antonio A., A sketch of analytical   methods for document dating Part I. The static approach: Determining age independent analytical profiles. International Journal of Forensic Document Examiners (1995), 1(1), 40-51.
  22. Aginsky, Valery N. Some   new   ideas for dating   ballpoint   inks — a   feasibility   study. Interior, Moscow, Russia, Journal of Forensic Sciences (1993), 38(5), 1134-50.
  23. Stewart, Larry F. Ballpoint   ink age determination by volatile   component   comparison – a preliminary study. Forensic Serv. Div., U. S. Secret Serv., Washington, DC, USA. Journal of Forensic Sciences (1985), 30(2), 405-11.
  24. Burleigh, Richard; Baynes-Cope, A. D.,   Possibilities in the dating of writing   materials and textiles, Lab., Br. Mus., London, UK, Radiocarbon (1983), 25(2), 669-74.
  25. Brunelle, Richard L.; Pro, Maynard J. Systematic   approach to ink   identification. Firearms Div., Intern. Revenue Serv., Washington, DC, USA, Journal – Association of Official Analytical Chemists (1972), 55(4), 823-6.
  26. Hofer, R. Dating of ballpoint   pen   ink, Forensic Science Division, Document Laboratory, Zurich Canton Police, Zurich, Switz, Journal of Forensic Sciences (2004), 49(6), 1353-1357.
  27. L. Brunelle & K.R. Crawford: Advances in the forensic analysis and dating of writing ink. C.C. Thomas Publisher, Springfield, IL, USA, 2003

Analisi chimica oggi.

In evidenza

Luigi Campanella, ex Presidente SCI

Generalmente chi ricorre all’analisi chimica per un problema nuovo ritiene che, tra i tanti, esista già un metodo adatto per i suoi scopi, lo ricerca e talvolta lo adatta e lo applica personalmente; da questa acritica propensione, come si è già rilevato, possono derivare molti danni.

La chimica analitica, ben conscia di questo, ha fortemente sviluppate, e ampiamente e soddisfacentemente applicate, una filosofia e una prassi che le permettono di affrontare con sistematicità nuovi problemi conoscitivi e nuovi campi di committenza; come può essere rilevato:

  • nella cura con cui vengono affrontati i problemi del linguaggio e delle definizioni;
  • nel cosiddetto iter analitico, cioè nel percorso logico e procedurale che ogni analisi deve seguire senza omissioni e alterazioni, ossia nell’insieme coerente dei mezzi e delle operazioni che partono dalla definizione dei problemi e giungono alla soddisfacente soluzione di essi;
  • nell’organizzazione internazionale per le analisi di qualità (v. oltre).

L’iter analitico consta delle seguenti parti nel seguente ordine:

  • approccio analitico ai problemi e ai sistemi,
  • prelievo dei campioni,
  • trattamenti e separazioni,
  • taratura,
  • calibrazione,
  • misurazione,
  • valutazione dei dati sperimentali,
  • elaborazione dei dati sperimentali,
  • classificazione,
  • immagazzinamento e recupero delle informazioni.

Il risultato è la caratterizzazione chimica (compositiva, strutturale, correlativa e alterativa); ove l’operazione sia finalizzata ad una diagnosi,come ad esempio in archeologia spetterà a quest’ultima disciplina la sua utilizzazione per diagnosi e interventi, in armonia e in accordo con la caratterizzazione umanistica.

L’analisi chimica ha per oggetto un sistema, la determinazione chimica di un analita (componente o proprietà del sistema), la misurazione di una grandezza fisica del sistema. Il risultato della misurazione, la misura, è dipendente sia dall’analita che dalla matrice; una o più misure concorrono a una determinazione; una o più determinazioni costituiscono un’analisi. Si suole distinguere anche tra tecnica, metodo, procedimento e protocollo.

Per tecnica analitica si intende lo studio (con prospettive di applicazioni) delle correlazioni tra quantità di sostanza e grandezza fisica relata misurabile; essa descrive i principi e la teoria delle interazioni, le apparecchiature per generare e per definire qualitativamente e quantitativamente le energie in gioco, i rivelatori e i sensori. Esempi: tecniche ottiche e spettrali, elettrochimiche, termiche, separative, cromatografiche, isotopiche, chimiche, biologiche.

Un metodo è l’adattamento di una tecnica a una categoria di problemi e deve comprendere tutto l’iter analitico (spesso però viene riduttivamente inteso come la sua parte centrale che va dai trattamenti dei campioni alla valutazione dei risultati sperimentali); un metodo analitico descrive e prescrive le caratteristiche del laboratorio e degli operatori, i reattivi e i materiali di riferimento, le apparecchiature e i procedimenti. Un metodo (o parte di esso) con l’adeguamento a situazioni specifiche diventa procedimento; protocollo è l’insieme di istruzioni da seguire alla lettera nell’applicazione di un procedimento elevato a norma ufficiale.

Metodo non va confuso con metodologia, che è il discorso globale comprendente tutti e quattro i termini; da scoraggiare è anche l’uso dei termini metodica (si tratta di un aggettivo) e procedure (termine giuridico).

Per meglio chiarire la differenza tra misurazione e analisi si tenga presente che sei delle sette grandezze di base del Sistema Internazionale di Unità di Misura (SI): lunghezza, massa, tempo, intensità di corrente elettrica, temperatura termodinamica e intensità luminosa, sono grandezze fisiche, la settima, la quantità di sostanza è grandezza chimica. L’analisi chimica coinvolge sempre la settima grandezza e, a seconda dei casi, una o più delle altre sei; pertanto essa è sempre dipendente da grandezze fisiche e dal tipo di energia da queste definito.

Da questa premessa si può trarre ragione della classificazione dei metodi analitici basata sul tipo di energia in gioco, di cui qui appresso si riportano esempi.

Musei, scienza e mediazione culturale.

In evidenza

Luigi Campanella

Negli ultimi decenni si è andato consolidando nelle amministrazioni pubbliche e in particolare nelle istituzioni culturali il riconoscimento della centralità dell’utente, con significativi cambiamenti di prospettiva nella progettazione e nella gestione delle attività e dei servizi.

L’esigenza di interpretare le aspettative del pubblico (o meglio dei pubblici) e di verificarne poi il gradimento è oggi maggiormente avvertita dai responsabili e curatori dei musei, tradizionalmente impegnati più sul versante tecnico-scientifico della ricerca, della documentazione, dell’ordinamento e della conservazione delle collezioni che su quello della comunicazione e della divulgazione.

Lo sviluppo del turismo culturale, la democratizzazione della cultura hanno sollecitato un progressivo miglioramento dei servizi di orientamento e di accoglienza, il prolungamento degli orari di apertura dei musei, il confronto con esperienze straniere, mentre il restauro e l’adeguamento alle normative di sicurezza delle strutture che ospitano le collezioni storiche (realizzati grazie anche a finanziamenti speciali, dal FIO ai fondi europei) hanno costituito spesso un’occasione preziosa per ripensare allestimenti e percorsi, per creare nuovi spazi espositivi o di intrattenimento (dalle caffetterie, ai bookshop, ai laboratori didattici), per rimuovere le barriere architettoniche.

Il quadro che emerge dall’ultima indagine effettuata nel 2007 dall’Ufficio Studi del Ministero presso 158 musei statali, i cui risultati sono pubblicati nel volume Musei, pubblico, territorio. Verifica degli standard nei musei statali, edito da Gangemi, risulta quindi, almeno in parte, soddisfacente.

L’esame dei rapporti del museo con il pubblico effettivo e potenziale (realizzato attraverso l’autovalutazione degli stessi direttori d’istituto, che hanno compilato un questionario assai analitico, redatto sulla base delle linee guida e degli standard dell’Atto di indirizzo emanato con il DM 10 maggio 2001) ha interessato diversi aspetti: dall’accesso (raggiungibilità, segnaletica esterna, orari e giorni di apertura, accoglienza e confort) alle dotazioni e servizi essenziali (strumenti di comunicazione primaria, sussidi alla visita, servizi educativi, biblioteca/centro di documentazione/fototeca, servizi accessori), alle attività di valorizzazione, promozione e divulgazione, agli strumenti di analisi del pubblico e verifica del gradimento della visita.

Impossibile sintetizzare in poche battute i risultati, che nella pubblicazione sono illustrati anche con riferimento alle diverse tipologie di collezioni, dimensioni, aree geografiche di appartenenza.

Per fornire solo qualche elemento, si può affermare che appaiono soddisfacenti gli orari e la continuità dell’apertura, le dotazioni e i servizi essenziali dei musei: le didascalie sono assicurate per tutte le opere esposte nel 94% degli istituti che hanno partecipato all’indagine, pannelli illustrativi o schede mobili di sala sono presenti in 149 istituti su 158, guide brevi sono disponibili nel 75% dei musei, le visite guidate sono previste nell’84% dei casi esaminati, sia pure con modalità di erogazione non sempre ottimali.

Meno frequenti sono invece le audio guide (proposte solo nel 24% dei casi), le postazioni multimediali (presenti nel 18%), i cataloghi generali a stampa (disponibili solo nel 29% dei musei) e ancora carenti risultano in generale gli apparati in lingua straniera.

Ulteriori margini di miglioramento dovrebbero interessare gli strumenti di orientamento alla visita, la segnalazione dei percorsi e una chiara identificazione delle sale.

Viene inoltre riconfermata da questa indagine la vocazione didattico-educativa dei musei statali: l’86 % dei musei analizzati, attraverso la Soprintendenza di riferimento, dispone di un servizio educativo e l’80% ha dichiarato di stabilire rapporti strutturati con le scuole del territorio, anche se gli scarsi finanziamenti e il ridotto numero di personale dedicato limita di fatto il numero dei progetti realizzati e quindi l’ impatto delle iniziative sul territorio.

Negli ultimi anni è notevolmente aumentata la presenza dei musei statali su internet: il 79% dei musei risulta dotato di un sito web che fornisce almeno le informazioni essenziali sulle collezioni e i servizi.

Per quanto riguarda la valorizzazione, mentre si è rilevata un’ampia diffusione delle esposizioni temporanee (organizzate nel 2006 dal 73% dei musei), di conferenze ed altri eventi, sembrano ancora scarsamente praticate altre forme di promozione dell’immagine e delle iniziative (da realizzare attraverso rapporti costanti con i media, con gli organismi di promozione turistica, con gli albergatori, gli esercizi commerciali, etc.) e non sono sufficientemente sviluppate iniziative volte alla fidelizzazione del pubblico, forme di partenariato con altre istituzioni nazionali e internazionali per la realizzazione di progetti scientifici e divulgativi comuni.

Proprio queste linee si spera saranno maggiormente sviluppate in futuro, grazie anche all’impulso che verrà dalla nuova Direzione generale per la valorizzazione.

Un contributo sostanziale potrebbe anche venire dal riconoscimento da parte delle istituzioni della figura del mediatore culturale, capace per il museo di concepire nuovi modi per conoscerlo ed apprezzare le sue collezioni. Con il loro agire i mediatori culturali sottolineano la pertinenza sociale del museo e facilitano non solo l’accesso al suo patrimonio ma anche l’interazione con la sua cultura. Per raggiungere tale obiettivo, collaborano con i diversi settori del museo, ma anche con i colleghi che operano nelle reti pedagogiche, culturali, sociali ed economiche.

I loro compiti principali possono essere così descritti:

   * concepire, realizzare, coordinare, seguire e valutare le attività e la creazione di supporti per il pubblico attuale e potenziale: i progetti educativi e culturali elaborati devono allacciare il maggior numero di legami tra il museo e la popolazione;

   * partecipare alla concezione di esposizioni permanenti e temporanee, integrandovi le attività pensate per soddisfare le esigenze dei visitatori;

   * garantire l’accompagnamento dei visitatori e degli interlocutori nell’ambito dei progetti educativi e culturali legati alle collezioni come pure alle manifestazioni temporanee del museo;

   * creare supporti e materiali didattici per le diverse forme di mediazione culturale (mediazione-presenza, mediazione tecnologica, ecc.);

   * formare e dirigere i collaboratori che partecipano ai progetti di mediazione culturale o scientifica del museo;

   * curare le relazioni con i colleghi coinvolti nella mediazione culturale come pure con i vari tipi di pubblico;

   * informare il responsabile o la responsabile della mediazione culturale dei bisogni e delle attese del pubblico;

   * partecipare alla valutazione dei programmi e delle attività di mediazione culturale come pure agli studi sui diversi tipi di pubblico;

   * dare il proprio apporto alla ricerca e allo sviluppo nel campo della mediazione culturale e contribuire in tal modo alla diffusione dell’attività del museo;

   * tenersi aggiornati sulle ultime novità e tendenze che riguardano il proprio settore, accrescendo così le proprie competenze professionali.

I mediatori culturali sono dunque l’interfaccia fra popolazione e museo: da un lato contribuiscono alla democratizzazione dell’accesso alla cultura e ad un’educazione pluralistica, dall’altro valorizzano il museo all’interno di una comunità. In passato alcuni giornalisti illuminati (cito uno per tutti Foresta Martin) hanno svolto anche questa funzione attraverso i loro continui interventi e le loro pubblicazioni. Oggi le pagine della Scienza nei quotidiani sono meno presenti ed il patrimonio rappresentato dai giornalisti di competenza si è purtroppo impoverito.

Quest”ultima riflessione riguarda soprattutto i Musei Scientifici: il loro carattere prevalentemente storico e collezioniostico che ha prevalso dal Rinascimento all’Illuminismo oggi deve integrarsi con un ruolo formativo del Museo. L’utente non è più una lastra fotografica vergine: i mezzi telematici di informazione lo hanno già in qualche modo impresso per cui un approccio solo di documentazione  non basta, soprattutto se il Museo deve svolgere anche un ruolo formativo nella cultura scientifica. Se trasferiamo queste considerazioni ai Musei di Chimica c’è subito da rilevare che molti possono essere gli spunti guida: la dimensione delle apparecchiature, simbolicamente rappresentata da “Dall’armadiio alla Scatola”, l’evoluzione chimica dell’universo, la chimica nel corpo umano, la sensibilità analitica: dal macro al nano.

L’acqua, un indicatore di sostenibilità.

In evidenza

Luigi Campanella, ex Presidente SCI

Acqua, cultura, pace: un triangolo molto significativo. Pace vuol dire messa in comune di ricchezze e di risorse: il nostro Pianeta è nato senza barriere, senza confini. Le risorse del pianeta appartengono a tutte le Nazioni. Il pianeta Terra non conosce né le Nazioni, né i confini di proprietà degli Uomini. Esso cela, conserva ed elargisce i beni primari perché i Regni di Natura più evoluti ne possano trarre sostentamento.

E’ in questo spirito che l’Umanità deve operare con scambievole collaborazione, utilizzando le materie prime secondo il principio di equità. Fra queste risorse l’acqua è di certo la più necessaria per il nostro corpo: si può sopravvivere alla fame non alla sete.

L’acqua è una risorsa essenziale per la vita dell’uomo.Essa è fondamentale non solo per la sopravvivenza stessa, ma anche per attività quali agricoltura ed industria. Senza di essa non vi può essere sviluppo ed il mantenimento delle risorse idriche è problema molto importante. Le riserve idriche sono infatti soggette ad un deterioramento dovuto a molti fattori, tra i quali gli scarichi industriali, l’utilizzo di pesticidi in agricoltura, l’inquinamento atmosferico, riportato al suolo dalle piogge acide.

La ricchezza d’acqua non sempre significa disponibilità: in un terreno agricolo ad esempio si possono creare a seguito di ripetuti interventi sbagliati da parte dell’uomo delle condizioni assai negative a fini della trasferibilità e del trasporto dell’acqua. Sono stati messi a punto test idonei propri e finalizzati a misurare non la quantità di acqua presente, ma il grado di disponibilità.

Anche l’aspetto energetico sembra oggi cambiare. L’era dell’idrogeno, la nuova forma pulita di accumulo dell’energia ci obbliga a considerare l’acqua anche da questo punto di vista: risorsa preziosa di idrogeno. Se poi gli aspetti economici di bilancio non saranno soddisfatti, questo nulla toglie ad un’ennesima preziosità dell’acqua, essere un abbondante potenziale contenitore di idrogeno. Tra l’altro l’impiego della luce solare (in presenza di un catalizzatore) come energia estrattiva apre ulteriori spazi da percorrere.

Lo stesso ruolo che l’acqua esercita per il nostro corpo, la cultura esercita per la nostra anima e la nostra mente che sono alimentate dalla cultura, intesa in senso formativo e stimolante, conoscitivo e sociale. Traduzioni, religioni, arti di un popolo ne rappresentano la ricchezza comune, ma anche quella di ogni singolo cittadino. Queste risorse, acqua e cultura, contribuiscono alla crescita sociale ed economica, alla qualità, della vita, alla salute dei popoli ma esse stesse, se distribuite in modo iniquo, diventano strumenti di discriminazione, di dominio e di potere. La pace ne risulta compromessa.

A chi vengono tolte acqua e cultura vengono sottratte risorse di vita. Ne risulta un quadro internazionale di paesi troppo ricchi e paesi troppo poveri: allora la globalizzazione che potrebbe in senso positivo essere interpretata come messa a comune di risorse, trasferimento di tecnologie, condivisione di progresso, caduta di barriere diviene invece occasione per discriminazioni, compressioni, prepotenze.

La comunità culturale è certamente più sensibile alle discriminazioni e all’equa ripartizione delle risorse di quanto non lo sia la comunità dell’acqua, intesa come espressione della comunità economica. La pace che da questo viene spesso compromessa può essere salvata da quella: in questo senso convegni, incontri, appelli delle comunità scientifiche e culturali rappresentano preziosi strumenti in difesa della pace, dell’equilibrio sociale,del diritto alla vita ed alle sue indispensabili risorse.

 

Il colore giallo.

In evidenza

Luigi Campanella, ex Presidente SCI.

Colori a base di sostanze minerali sono stati utilizzati sin dalla preistoria: gesso, ocra, nelle varie gradazioni dal rosso chiaro al giallo chiaro; neri ricavati da biossido di manganese o da carbone di legna, sono stati utilizzati per le pitture rupestri del paleolitico superiore, più raramente terre verdi e ossido di manganese marrone, ed eccezionalmente anche violetto di manganese.

A partire dal neolitico si amplia la gamma di minerali utilizzati per la pittura e la ceramica, e si creano vari coloranti a base vegetale o animale per la tintura di tessuti, quali il rosso di robbia, il blu indaco, il blu di guado, il giallo di reseda. Con lo sviluppo della tecnica metallurgica diventano inoltre disponibili nuovi composti metallici, come ossido salino e carbonato basico di piombo, antimoniato di piombo.

Gli Egizi sono stati il primo popolo a dedicare un particolare impegno nella preparazione di colori per la pittura. La “fritta Egizia” o “blu Egizio”, ottenuto per cottura in forno a 800-900o di una precisa miscela di calce, ossido di rame e quarzo, e successiva macinazione, partendo da minerali come calcare, malachite e sabbia, è il più antico pigmento di sintesi. Altro pigmento di sintesi è l’antimoniato di piombo, dal Seicento noto come giallo di Napoli, prodotto come ossido o carbonato di piombo e ossido d’antimonio, ottenuti mediante trasformazioni di minerali.

Alcuni pigmenti prodotti (inventati?) circa 4000-5000 anni fa sono rimasti dei colori fondamentali fino al 1700-1800. Per esempio la biacca rappresenta fino alla fine del 1800 un pigmento fondamentale della pittura.

Unico documento rimasto della pittura greca: La Tomba del Tuffatore a Paestum (480-470 a.C.)

Dell’epoca greca non sono rimasti documenti diretti dell’arte pittorica, ma solo ampie descrizioni (a parte la tomba del tuffatore e i dipinti su vaso).

In epoca romana, soprattutto a partire dall’epoca imperiale era disponibile una gamma sufficientemente ampia di pigmenti. Quelli più apprezzati erano il minio e il cinabro, estratti minerali che mescolati a ocre davano differenti toni di rosso, come quelli delle pareti pompeiane; il blu, il porpora, il verde estratto da una preziosa lega di rame e stagno utilizzata per produrre un bronzo dorato, il crisocalco; il giallo oro, il nero, il bianco, per il quale si utilizzavano almeno tre varianti di creta, distinguendo tra bianco brillante e bianco opaco. Si producevano anche colori splendidi, luminosi e resistenti, a partire da sostanze organiche, come il rosso porpora, che si ricava dalla secrezione di un gasteropodo del genere Murex, e un blu superbo, denominato vitrum, ottenuto dal guado, che si affiancava all’indaco e all’azzurrite, minerale composto di carbonato basico di rame. Anche i pigmenti gialli erano disponibili sin dall’antichità in molte varietà e in genere stabili e resistenti. Tra questi, terre gialle, solfuri come l’orpimento e il realgar, l’antimoniato di piombo e il giallo di reseda, un pigmento vegetale utile sia in tintoria che in pittura.

I pigmenti utilizzati nel Medioevo sono quelli ereditati dall’antichità. Minio e cinabro sono i due colori base del primo Medioevo (basti pensare alle miniature), insieme alla lamina d’oro, ottenuta semplicemente per battitura delle monete. Un importante nuovo pigmento è il blu oltremare prodotto dal blu lapislazzuli, importato dal lontano Afganistan, che si aggiunge all’azzurrite; da questa si sono ottenute diverse tonalità utilizzando differenti gradi di macinazione. I pittori medioevali fecero anche largo uso di sostanze organiche: tinture blu indaco e blu di guado cui aggiunsero il tornasole, oltre alla lacca di chermes, o cremisi, e alla lacca rossa del brasile.

Dal XI al XIV secolo la pratica della pittura passa dai monasteri alla città ed inizia l’attività professionale dei pittori, passando con Giovanni Bellini e con Tiziano, dalla tempera alla pittura a olio. I pittori erano costretti per dare luminosità ad aggiungervi biacca, divenuto segno rivelatore del passaggio dal colore medioevale a quello moderno. Ancora alla fine del Rinascimento i pittori preparavano direttamente nelle loro botteghe i propri pigmenti; così ai materiali di base si aggiungevano tutta una serie di materie come leganti e cariche.

I colori primari per il pittore sono il rosso (rosso-magenta), il blu (il blu-ciano) e il giallo. Ogni popolo in ogni tempo ha attribuito ai colori significati simbolici diversi e i nomi dati alle tinte variano da una cultura all’altra. Come racconta Manlio Brisantin, studioso dei colori, oggi il giallo affascina pittori, musicisti, stilisti, pubblicitari, consumatori, per la sua natura calda, luminosa, positiva. Ma non è sempre stato così. Nel passato il giallo è stato spesso associato a caratteristiche negative: era il colore della menzogna, del tradimento, della malattia, della follia.

Colore primario e perciò base di innumerevoli sfumature di colore, il giallo era uno dei colori prediletti dagli impressionisti, da Matisse e Gauguin, dai Fauves e dai rappresentanti dell’arte astratta come Mirò,che generalmente alla ricerca di colori vivi e contrari in buona parte a miscugli fra colori hanno trovato nel giallo le due caratteristiche cercate, colore caldo e preimario (insieme al rosso ed all’azzurro). Kandinskij nel suo “Lo spirituale è nell’arte” associa il giallo al triangolo, al misticismo e allo spirituale: colore dell’oro, del sole, del grano, del pane fragrante, dell’elevazione.

Orpimento giallo allo stato di minerale

Questo colore così pieno di significati, nasconde altri segreti che riguardano il mistero della sua composizione e produzione sin dall’antichità. Cennini lo definisce colore “artificiato” per poi ribadire, tuttavia, la sua provenienza non alchemica. Con il progredire della scienza moderna, questo colore divenne il centro di un dibattito sempre più appassionato che investì persino la prestigiosissima Acadèmie Royale des Sciences de Paris, dove vi si dedicano ancora oggi incontri enciclopedici, intrecciando la passione per settori culturali della conoscenza naturale all’attenzione per altri più coinvolti negli interessi economici dell’industria,come dimostrato dalle aree di studio più sviluppate nell’accademia,che vanno dalla biologia alla biofisica,dalla metrologia alla geodesia. Giallo di bario, giallo di cadmio, giallo di cobalto, giallo di cromo, giallo di marte, giallo di napoli, giallo di piombo-stagno, giallo di smalto, giallo di spincervino, giallo di stronzio, giallo di titanio, giallo di zinco, giallo indiano, giallo minerale, gomma gutta, lacca gialla, litargirio, massicot, ocra gialla, oro, oro musivo. orpimento, terra di siena naturale, terra d’ombra naturale, zafferano, sono i nomi dei pigmenti gialli più noti.

Nel XX secolo l’uso del colore deve essere messo in relazione soprattutto a Matisse (quello della forma probabilmente a Cezanne): colori basati sulla gioia indotta dalle tinte cobalto,cromo e cadmio della chimica del secolo prima.

Ulivi con cielo giallo e Sole di Vincent Van Gogh. 1889. SI trova in un museo di Minneapolis (USA)

La pittura acrilica, una tecnica nuova pittorica, è nata in epoca relativamente recente. Le prime ricerche ed i primi esperimenticon emulsioni sintetiche iniziarono intorno agli anni ventida parte di pittori messicani come Orozco, Rivera e Siqueiros,la cui esigenza era quella di avere colori con le caratteristiche di praticità come quelli ad olio,duttilità come quelli a tempera, trasparenza come l’acquarello e resistenza agli agenti atmosferici come l’affresco. Le vernici sono prodotte con polveri colorate (pigmenti) mischiate con una resina acrilica (quasi esclusivamente di origine chetonica) di essicazione variabile, generalmente veloce, a seconda delle resine, dei pigmenti e della fabbrica produttrice. Presentano vantaggi e difetti, ma hanno una caratteristica importante:a differenza delle tradizionali tempere, sono indissolubili una volta asciutti.

I colori acrilici sono tranquillamente mescolabili fra loro e come diluente è preferibile semplice acqua, utilizzabile anche per cancellare, prima dell’asciugatura, parti di colore. Alcuni tipi di colori acrilici sono sensibili alla luce che li fa schiarire, tipo i colori rosso-violacei e blu-violacei, perché creati con pigmenti derivati da composti chimici organici fotosensibili, a questo fenomeno si ovvia con una lacca di resina acrilica con filtro UV che protegge tali colori.

Per gli altri colori non c’è bisogno di fissativo perché la resina acrilica che li compone li fa resistere alla luce e agli agenti atmosferici, smog compreso. Si comprende allora l’importanza della scelta dei sistemi di illuminazione focali e generali all’interno dei musei e delle gallerie d’arte,in quanto da essa può dipendere la salvaguardia di opere d’arte pittoriche

Datazione dei manufatti di cemento.

In evidenza

Luigi Campanella, ex Presidente SCI.

Alcuni anni fa una legge stabilì che potevano essere salvaguardate costruzioni costruite senza il rispetto delle distanze dalle rive del mare purchè costruite più di 20 anni prima. Si scatenò una vera bagarre sulla datazione di molte costruzioni per farle datare anteriormente ai 20 anni richiesti.

La datazione del cemento era e resta un’operazione assai delicata a cui la chimica dà un sostanziale contributo. Inoltre il poter caratterizzare un materiale cementizio invecchiato rende possibile una migliore valutazione nella determinazione di eventuali interventi di consolidamento (nel campo dell’edilizia civile) o di restauro (nel campo dei beni culturali), oltre – come si è detto- la sua datazione anche al fine di contribuire a dipanare dispute legali riguardanti la collocazione temporale di costruzioni edili.

Allo scopo di individuare dei possibili indicatori analitici per la diagnosi dell’invecchiamento di manufatti cementizi la prima operazione da fare è esaminare alcuni campioni provenienti da manufatti cementizi appena lavorati (fresco, circa 1 mese) e invecchiati naturalmente (non inferiore a 10 anni) o artificialmente mediante esposizione combinata a luce e calore e procedere con una diagnosi circa le alterazioni con tecniche rapide, che non richiedono pretrattamenti, quali l’analisi termica simultanea (analisi termogravimetrica (TGA) e differenziale (DTA), la diffrattometria a raggi x (XRD).

A cosa sono dovute le alterazioni suddette?

Rispondere a questa domanda è già gettare una base per la datazione. Individuare modifiche del manufatto, che sono riferibili al suo invecchiamento, risulta utile nella diagnosi dell’età del materiale

Diversi processi chimico-fisici avvengono tra le prime fasi della lavorazione del cemento, in cui si procede all’impasto con acqua, e le successive fasi dell’indurimento. Dopo 28 giorni si ha una maggiore definizione della composizione e della struttura; è infatti dopo tale periodo che sono previste le prove meccaniche per rispondere ai requisiti di legge riguardanti le opere di edilizia civile. In pratica, però, alcuni processi avvengono con cinetiche talmente lente e in dipendenza dell’ambiente circostante, che alcune modifiche del manufatto si manifestano solo dopo diversi anni dalla sua preparazione.

9780820602127-3La composizione chimica del cemento, anche se variabile e dipendente dalla zona di provenienza, essenzialmente è determinata dai seguenti componenti.

  • Il clinker che rappresenta il costituente principale. dal punto di vista mineralogico, esso può essere considerato come una roccia artificiale, sostanzialmente a base di silicati ed alluminati insieme ad una fase vetrosa a base di ossidi, la cui formazione è basata sulle reazioni in fase solida e sulla fusione di parte dei suoi costituenti, con la formazione di un magma eutettico in seno al quale si completa la formazione dei composti cristallini non fusibili.
  • Il gesso è molto diffuso in natura in giacimenti di origine sedimentaria, talvolta ricoperti da depositi di cloruro di sodio o di argille e marne. Esso è costituito essenzialmente da solfato di calcio biidrato CaSO4 2H2O, ma di rado è allo stato puro e presenta spesso impurezze quali silice, allumina, ossido di ferro, ossido di manganese, carbonati di calcio e di magnesio, minerali argillosi.

Secondo la normativa UNI EN 197-1-2001 il solfato di calcio può essere aggiunto al clincker durante la macinazione sia sotto forma di gesso (solfato di calcio biidrato CaSO4·2H2O), di gesso semiidrato (CaSO4·1/2H2O), o come anidrite (solfato di calcio anidro CaSO4) o come miscela di questi.

  • La Pozzolana e le ceneri volanti

La Pozzolana è una roccia di origine vulcanica presente in varie località del Lazio, della Sicilia e della Campania (p.e. Pozzuoli). E’ costituita da ossidi,in prevalenza di silicio,ma anche di alluminio,fero,calcio ed altri metalli. Essa è costituita da lapilli e ceneri vulcaniche cementatesi per azione degli agenti atmosferici i quali, agendo sui componenti delle lave a base di silicio, hanno dato origine ad un prodotto di natura acida che contiene silice (SiO2) in forma reattiva, capace cioè di reagire a temperatura ambiente con l’idrossido di calcio formando dei composti insolubili. La pozzolana macinata insieme al gesso e al clinker è usata per produrre cementi pozzolanici.

triangle_imagelargeQuando si impasta il cemento con l’acqua, la massa in breve comincia a indurire (fa presa); col procedere del tempo l’indurimento prosegue (può durare anche molti anni) e se la malta è mantenuta sott’acqua può assumere consistenza lapidea. Diverse teorie sono state proposte per spiegare le reazioni che accompagnano presa e indurimento; di esse, una ne attribuisce la causa alla formazione dei composti cristallini che si originano dalla reazione dei componenti dei clinker con l’acqua, l’altra invece sostiene che si formino sostanze di natura colloidale.

cemento2

Illustrazione schematica dei pori nel silicato di calcio in diversi stadi di idratazione http://matse1.matse.illinois.edu/concrete/prin.html

Oggi si è giunti in parte ad una fusione di queste due teorie e la presa e l’indurimento delle malte cementizie vengono attribuiti all’idrolisi e all’idratazione degli alluminati e dei silicati di calcio presenti nel clinker con messa in libertà di idrato di calcio e alla formazione anche di ferriti di calcio idrati. Dei suddetti composti idrati solo l’idrato di calcio può dare cristalli sufficientemente grandi da essere visibili al microscopio, gli altri formano cristalli di dimensioni all’incirca uguali a quelle delle particelle colloidali. Il processo di presa del cemento prosegue con quello di invecchiamento durante il quale alcune delle reazioni descritte proseguono ed altre se ne instaurano, sostanzialmente reazioni della matrice con l’acqua che favoriscono una maggiore idratazione del materiale riferibile sia all’acqua di costituzione, che di adsorbimento. Inoltre l’ambiente di esposizione soprattutto nelle atmosfere urbane può facilitare l’innescarsi di reazioni che modificano la matrice.

I processi di invecchiamento del materiale cementizio, portano a modifiche composizionali e strutturali della matrice che possono essere messe in evidenza all’analisi diffrattometrica e termogravimetrica, in quanto capaci di discriminare fra cementi “giovani” e cementi “vecchi” sulla base di differenze riguardanti il loro stato di idratazione, ossidrilazione, carbonatazione e cristallizzazione.

In sintesi la ricerca di indici capaci di agire da marker dell’invecchiamento del cemento è avvenuta a partire da un confronto fra cementi preparati di fresco e cementi invecchiati naturalmente od artificialmente. Al fine di evidenziare le possibili differenze si è ricorsi all’uso di tecniche diffrattomentriche e di metodi termici.

Si è pervenuti alla conclusione che all’aumentare del tempo di invecchiamento aumenta la quantità d’acqua rilasciata al riscaldamento (dal 2-3% all’8-10%), diminuisce il rilascio di anidride carbonica (dal 35-40% al 6-10%) alla temperatura di decomposizione del carbonato e diminuisce il peso del residuo del processo di calcinazione (dal 40-42% al 16-20%). Tali differenze sono da attribuire a una degradazione subita durante l’invecchiamento dei composti che caratterizzano la formazione del cemento. A riprova di ciò a tali variazioni corrispondono ben individuate variazioni degli spettri di polvere ai raggi X.