Macchine molecolari attraversano membrane cellulari

In evidenza

Rinaldo Cervellati (con un commento di Vincenzo Balzani)

Opportuni dispositivi o “macchine” molecolari ruotando attraverso le membrane cellulari potrebbero veicolare farmaci e distruggere le cellule cancerose

Sono titolo e sottotitolo di una recente notizia riportata da Bethany Halford sul n. 35 di Chemistry & Engineering newsletter on line il 30 agosto scorso. Premesso che per macchina molecolare, o nanomacchina, si intende un insieme di molecole legate fra loro (supramolecola) in grado di eseguire movimenti simili a quelli meccanici in risposta a specifici stimoli luminosi o elettrici, Halford riporta i risultati di una recente ricerca compiuta da un gruppo coordinato dal prof. James M. Tour, direttore del Center for Nanoscale Science and Technology della Rice University a Houston. (V.Garcià-Lopez et al., Molecular machines open cell membranes, Nature, 2017, DOI: 10.1038/nature23657)

James M. Tour

Quando stimolato dalla luce ultravioletta, un opportuno motore molecolare può ruotare nel suo percorso entro le cellule causando aperture attraverso le quali potrebbero scivolare i terapeutici o potrebbero essere sufficienti per distruggere l’integrità della cellula tumorale, sostengono gli autori della ricerca.

La ricerca di Tour è da tempo focalizzata sulla creazione di macchine molecolari con queste caratteristiche. Quando illustro le nostre ricerche, spesso le persone mi chiedono se le macchine molecolari potranno un giorno essere usate per curare i tumori, dice Tour.

Tali domande si sono moltiplicate dopo l’assegnazione del Premio Nobel per la Chimica lo scorso anno [1].

Poiché le macchine molecolari sono molto più piccole delle strutture biologiche, come le cellule, Tour inizialmente non pensava che potessero avere un uso pratico in medicina. Ma poi, dice, mi sono reso conto che circondare una cellula con macchine molecolari con una parte potenzialmente rotante poteva dare risultati interessanti.

Così ho interessato Robert Pal della Durham University, Gufeng Wang della North Carolina State University e Jacob T. Robinson di Rice a esplorare questa idea (tutti coautori dell’articolo su Nature)

Il gruppo di Tour ha costruito diverse molecole con il seguente schema:

La luce UV isomerizza il doppio legame in questa supramolecola, rendendo il gruppo rotore libero di ruotare.

Alcune supramolecole costruite hanno catene peptidiche (R) che si associano a proteine ​​specifiche sulla superficie di alcune cellule. Nelle prove su cellule tumorali della prostata umana, il gruppo ha scoperto che queste macchine potrebbero saltare sulle cellule e, dopo l’esposizione a luce UV, distruggerle in meno di tre minuti.

Ma succede solo quando si espongono alla luce“, afferma Tour. Ciò significa che se le macchine saltano su cellule sane senza essere irradiate le aperture rimarranno inattive lasciandole inalterate.

La prossima sfida che i ricercatori affronteranno, continua Tour, sarà quella di ottenere la stessa azione nanomeccanica mediante irradiazione visibile o nel vicino infrarosso, raggi che penetrano più profondamente nel tessuto, in modo che le molecole del motore possano essere ampiamente utilizzate negli animali e nelle persone.

A tal fine, Tour dice che il gruppo sta già lavorando allo sviluppo di motori che ruotano in risposta alla luce visibile e alla radiazione a raggi infrarossi a due fotoni.

[1] P. Greco, http://www.scienzainrete.it/contenuto/articolo/pietro-greco/balzani-pioniere-delle-macchine-molecolari-premiate-stoccolma

Commento di Vincenzo Balzani

La rottura del doppio legame C=C in seguito ad eccitazione fotonica è una delle più conosciute reazioni fotochimiche. Usualmente viene utilizzata per convertire isomeri trans nei corrispondenti isomeri cis, che poi termicamente tornano alla più stabile forma trans. La foto isomerizzazione avviene perché lo stato eccitato ha un minimo di energia per angoli di rotazione attorno ai 90°, dove lo stato fondamentale ha un massimo. Ben Feringa, premio Nobel per la Chimica 2016, ha utilizzato da molto tempo composti di questo tipo per sviluppare una serie di motori rotanti unidirezionali (Figura 1) [1]:

Figura 1. Motore rotante molecolare azionato dalla luce [1].

James Tour aveva poi tentato di utilizzare con scarso successo fotoisomerizzazioni di questo tipo per costruire il prototipo di una nano macchina azionata dalla luce [2]:

Figura 2. Nanomacchina potenzialmente azionata dalla luce [2].

Un altro tipo di macchina molecolare potenzialmente utile in medicina è la nano valvola illustrata nella Figura 3, azionata da impulsi redox [3]:

Figura 3. Nano valvola azionata da una reazione redox

Tornando ai composti con doppio legame C=C, l’eccitazione fotonica in genere causa solo una rotazione di 180° attorno al doppio legame (non è che si crea un rotore libero). Quindi per avere un effetto distruttivo su una cellula credo si tratterebbe di provocare tante successive foto isomerizzazioni della “macchina”, che potrebbe “rompersi” a causa di reazioni secondarie. Bisogna anche tener conto che usando luce UV si possono direttamente distruggere cellule anche senza l’azione di “macchine” fotosensibili; penso che gli autori abbiano tenuto conto di questo. Utilizzare luce visibile o infrarossa credo sia complicato perché il doppio legame in tal caso dovrebbe essere molto delocalizzato sul resto della molecola e la barriera di isomerizzazione sarebbe allora molto bassa, accessibile termicamente. Poi c’è il problema tutt’altro che semplice, in vivo, di irradiare le “macchine” che sono vicine alle cellule malate e non a quelle sane.

In conclusione, le macchine molecolari artificiali [4] potranno certamente essere utili per applicazioni mediche, ma c’è ancora molta strada da fare.

  1. Koumura, N., Zijlstra, R.W.J., van Delden, R.A., Harada, N. and Feringa,B.L. (1999) Nature, 401, 152.
  2. Morin, J.-F., Shirai, Y. and Tour, J.M. (2006) Organic Letters, 8, 1713.
  3. Saha, S., Leug, K.C.-F., Nguyen, T.D., Stoddart, J.F. and Zink, J.I. (2007) Advanced Functional Materials, 17, 685.
  4. Balzani, V., Credi, A., Venturi, M. (2008) Molecular Devices and Machines, Concepts and Perspectives for the Nanoworld, Second Edition, Wiley-VCH, Weinheim.

 

Johannes Rydberg e la tavola periodica

In evidenza

Rinaldo Cervellati

Nel mio precedente post sulla tavola periodica dimenticata di W. Rodebush, ho fatto torto a Johannes Rydberg, fisico svedese, relegandone la figura in una breve nota. Il lavoro di Rydberg non si è limitato infatti alla proposta di una forma, anzi di due possibili forme della tavola, sulla base della sua più importante scoperta sulla regolarità delle sequenze di righe negli spettri atomici di emissione degli elementi, ma ha dato notevoli contributi allo sviluppo della tavola con geniali intuizioni, tanto da meritarsi un capitolo in una raccolta di scritti di Wolfgang Pauli [1]. Lo scritto di Pauli inizia infatti così:

Non è noto come dovrebbe esserlo, che le ricerche di Rydberg sulle righe spettrali abbia avuto origine nel suo interesse per il sistema periodico degli elementi, un interesse che lo accompagnò per tutta la sua vita.[1, p. 73]

Fig. 1 Johannes Robert Rydberg

Johannes (Janne in colloquiale svedese) Robert Rydberg, nato nel 1894 a Halmstad (sud della Svezia), ottenne il Ph.D. in matematica nel 1879 all’università di Lund. Nel 1880 conseguì la docenza in matematica e due anni dopo quella in fisica. In questi anni iniziò a studiare il problema dello standard per i pesi atomici perché si chiedeva quale fosse la ragione dell’aumento apparentemente casuale del peso degli atomi nel sistema periodico di Mendeleev. Cercava invano una formula che giustificasse questo andamento caotico.

Nel 1885, J.J Balmer[1] presentò una equazione che interpretava lo spettro nel visibile dell’atomo di idrogeno, Rydberg quindi passò a studiare gli spettri atomici degli elementi e fra il 1887 e il 1890 trovò che considerando il numero d’onda (cioè il numero di onde per unità di lunghezza che equivale alla lunghezza d’onda) si semplificavano notevolmente i calcoli e ottenne infine una equazione valida per tutte le serie di righe spettrali di tutti gli elementi [2].

Fig. 2 Parte della formula di Rydberg in originale

L’equazione di Balmer diventava quindi un caso particolare della formula di Rydberg[2].

Nella sua memoria del 1890 Rydberg scrive:

Con la scoperta di Mendeleev della tavola periodica degli elementi, è sorto un nuovo punto di partenza di grande importanza per tutto il lavoro che presento qui… ho concluso che la periodicità di un gran numero di coefficienti fisici deve dipendere dal fatto che la forza che agisce tra due atomi dello stesso o di elementi diversi è una funzione periodica del peso atomico. [2], cit in [3]

Poi egli afferma che:

… il problema della costituzione degli spettri luminosi è ancora irrisolto e la maggior parte dei tentativi che sono stati fatti per confrontare e calcolare gli spettri degli elementi lo sono sono stati in modo da gettare discredito su questo lavoro e per esagerare le difficoltà che i loro autori hanno trovato e non sono stati in grado di superare. [2], cit in [3]

Fornisce quindi una formula basata su vari costanti e osserva che:

… le lunghezze d’onda e i numeri d’onda delle linee corrispondenti, così come i valori delle tre costanti della corrispondente serie di elementi diversi, sono funzioni periodiche del peso atomico. Quindi, se sono noti gli spettri di due elementi [non contigui] nella tabella periodica, lo spettro dell’elemento tra di essi può essere calcolato per interpolazione. [2], cit in [3]

Ecco un risultato molto importante, attraverso la formula di Rydberg è possibile prevedere, con discreta approssimazione, lo spettro di emissione degli elementi lasciati vacanti in una casella noti gli spettri di due elementi vicini alla casella vuota. Un mezzo potente, tenendo presente che ai tempi di Mendeleev soltanto due terzi degli elementi erano noti.

Pauli annota:

Credo che bisogna ammettere che le congetture di Rydberg sembravano talvolta piuttosto stravaganti, ma d’altra parte si basavano sempre su osservazioni empiriche.[1, p.74]

Fig. 3 Wolfgang Pauli

A conferma di ciò Pauli cita un lavoro di Rydberg [4] del 1897 in cui l’autore afferma che:

Nelle indagini sul sistema periodico gli ordinali (Ordnungszahlen) degli elementi dovrebbero essere utilizzati come variabili indipendenti invece del peso atomico. [4] cit in [1]

A quel tempo l’idea era semplicemente inaccettabile. Ma Rydberg non basava la sua congettura solo sul fatto che il numero d’ordine nella tavola fosse un intero, egli nello stesso articolo riporta una regola semplice e interessante per la relazione fra il numero di massa A e il numero ordinale [numero atomico] Z. La regola è:

Se Z è dispari (valenza chimica dispari), A = 2Z + 1; se Z è pari, A = 2Z[3].[4] cit in [1]

Pauli scrive:

Rydberg era consapevole che l’azoto (Z = 7, M = 14) è un’eccezione, ma è vero che a parte ciò questa regola regge fino a circa il Calcio. Rydberg si è fidato di questa regola assumendo caselle vuote, spostando così i numeri atomici a valori più alti, fino a che la regola non si adattava. In questo modo egli ha la tendenza ad ammettere troppi buchi nel sistema periodico e valori troppo elevati per i numeri atomici. [1, p. 74]

Nel 1897 Rydberg assunse temporaneamente le funzioni di professore di fisica, rimanendo tuttavia un assistente docente. Nello stesso anno concorse alla cattedra di fisica, rimasta vacante, dell’università di Lund. Al concorso parteciparono sei persone. Alla fine fu deciso per Albert Victor Bäcklund, nonostante i membri della commissione giudicatrice lo avessero preliminarmente scartato[4]. Dopo la sua nomina, Bäcklund cercò di promuovere Rydberg a professore. Non è chiaro se Bäcklund stava tentando di correggere un torto o se avesse voluto un aiuto per rendere più leggero il suo carico di insegnamento [3]. Comunque, nel marzo 1901 Rydberg fu nominato professore straordinario, diventando ordinario solo nel gennaio 1909. Da quel momento fino al raggiungimento dell’età pensionabile, nel 1915, ha tenuto la cattedra di fisica a Lund.

Nel 1906 Rydberg fece un ulteriore passo in avanti nelle sue ricerche sul sistema periodico, riconoscendo per primo che i tre numeri 2, 8, 18 per gli elementi nei periodi sono rappresentati da 2×12, 2×22, 2×32 [5]. Vi era ancora qualche incertezza sul numero delle terre rare che Rydberg pensava fossero 36 mentre sono 32, alcuni numeri atomici erano ancora troppo alti ma non in così grande misura come nei lavori precedenti.

In una successiva ampia monografia del 1913 [6] Rydberg fa un altro passo avanti. Dopo aver riportato le scomposizioni del paragrafo prededente, scrive:

la continuazione sarebbe 2×42 = 32; 2×52 = 50 ecc.[6, §3]

Dice Pauli:

Questa è la famosa formula 2p2 (p intero) che Sommerfeld ha chiamato “cabbalistic” nel suo libro “Atombau und Spektrallinien” e che mi ha colpito molto quando ero studente. Certamente ora [Rydberg] è consapevole che il Gruppo G4 (p = 4, terre rare) consiste di 32, non di 36 elementi.[1]

Continua Pauli:

C’è un’importante differenza fra l’interpretazione di Rydberg del 1913 e quella odierna. Egli chiamò i numeri 2p2, che determinano la distanza tra due gas nobili, “un mezzo gruppo” e il suo doppio 4×12, 4×22 … 4×p2 “un intero gruppo”. È stato portato a questa interpretazione dal fatto che i periodi 8 e 18 si verificano due volte nel sistema periodico. E si convinse che lo stesso doveva valere per il primo gruppo che corrisponde a p = 1, che credeva consistere di quattro, non di due elementi. Il valore 4 per il numero atomico di He gli sembrava supportato da linee spettrali nelle nebulose e nella corona delle comete, che egli attribuì a due nuovi elementi ipotetici che lui chiamò nebulium e coronium[5].[1]

Tutto ciò si può vedere in Figura 4, tratta dall’articolo originale di Rydberg [6] del 1913, che mostra la sua rappresentazione “a spirale” della tavola periodica[6]: i gruppi “metà” e “intero” corrispondono qui al susseguirsi delle porzioni di 180° e 360° della spirale. I “buchi” nel sistema sono ora quasi completamente riempiti, in modo che i numeri atomici di Rydberg differiscono da quelli veri solo per la differenza costante di due, causata dall’assunzione dei due elementi nebulium e coronium tra H e He.

La tavola periodica a spirale di Rydberg [6]

Poco tempo dopo, grazie alle ricerche del chimico britannico Henry Moseley (1887-1915) fu chiaro che il principio della periodicità sta nella carica del nucleo e non nella massa degli atomi [7].

Rydberg, venuto a conoscenza dei lavori di Moseley, fu contento della conferma della sua idea del 1897 sull’importanza del numero atomico e sui dettagli della rappresentazione del sistema periodico. Tuttavia, in un articolo sui lavori di Moseley, egli ribadì l’ipotesi di due nuovi elementi tra H e He e di conseguenza la differenza costante di due fra i numeri atomici [8].

Dopo il 1914 Rydberg non pubblicò più nulla, causa il suo stato di salute. Infatti, due anni dopo la nomina alla cattedra di Fisica, venne colpito da ictus e sebbene si fosse ripreso abbastanza bene da tornare al lavoro, cominciò a soffrire di disturbi cardiovascolari. La sua salute continuò a deteriorarsi fino a che, nel 1914 decise di prendere un congedo per malattia. Lo sostituì il suo assistente Manne Siegbahn[7] (1886-1978) fino al 1919, anno in cui Rydberg fu congedato dall’università per raggiunti limiti di età (65 anni). Morì nel 1919 in seguito a un’emorragia cerebrale [3].

Sebbene sia stato candidato non gli fu assegnato il premio Nobel per la fisica del 1917 che quell’anno non fu aggiudicato. Fu candidato anche nel 1920, ma la sua prematura scomparsa lo rese inammissibile. Ancora più sorprendente è che egli non fu eletto alla Royal Swedish Academy of Sciences. Tuttavia, poco prima della sua morte, fu eletto membro della Royal Society of London. Certamente Rydberg ha ottenuto più fama dopo la morte che durante la vita. Nel 1954 l’Università di Lund organizzò una conferenza per celebrare il 100° anniversario della sua nascita, alla quale parteciparono anche Niels Bohr e Wofgang Pauli, con contributi originali [9, 1 rispettivamente] Anche a Rydberg sono stati dedicati un cratere della Luna e un asteroide.

Chi desiderasse saperne di più sulla persona e sulla costante di Rydberg può consultare il riferimento [10].

Infine, desidero ringraziare il nostro blogger, Claudio Della Volpe, che mi ha suggerito questo post fornendomi parte del materiale bibliografico sotto riportato.

Bibliografia

[1] W. Pauli, Rydberg and the Periodic System of the Elements, in: W. Pauli, Writings on Physics and Philosophy (C. P. Enz and K. von Meyenn Eds.) Translated by R. Schlapp, Springer-Verlag Berlin Heidelberg New York, 1994, Cap. 7, pp. 73-77. Il capitolo è scaricabile al link: http://cds.cern.ch/record/265825/files/CERN.pdf?version=1422

[2] J.R. Rydberg, Recherches sur la constitution des spectres d’emission des elements chimiques, Kungl. Svenska Vetenskapsakademiens Handlingar, VoI.23, Nr. 11, Stockholm 1890, pp 155.

[3] J.J. O’Connor, E.F. Roberts, Johannes Robert Rydberg, http://www-history.mcs.st-andrews.ac.uk/Biographies/Rydberg.html

[4] J.R. Rydberg, Studien über Atomgewichtszahlen, Z. Anorg. Chem., 1897, 14, 66-102.

[5] J.R. Rydberg: Elektron, der erste Grundstoff, Gleerupska; Lund, 1906, p.11 (cit in [1])

[6] J.R. Rydberg, Untersuchungen über das Systemder Grundstoffe, Lunds Univ. Arsskrift, Bd. 9, No. 18, (1913), cit in [1]. In francese: Recherches sur le systeme des elements, J. Chim. Phys., 1914, 12, 585-639.

[7] a)H.G.J. Moseley, XCCIII.The high-frequency spectra of the elements., Phil. Mag., 1913, 26, 1024-1034. b)H.G.J. Moseley, LXXX. The high-frequency spectra of the elements. Part II, Phil. Mag., 1914, 27, 703-713.

[8] J.R. Rydberg, The ordinals of the elements and the high frequency spectra, Phil. Mag., 1914, 28,144-149.

[9] N. Bohr, Rydberg’s discovery of the spectral laws, in: Proceedings of the Rydberg Centennial Conference on Atomic SpectroscopyActa Universitatis lundensis,  1954, 50, 15-21.

[10] Sister St John Nepomucene, Rydberg : The Man and the Constant, Chymia, 1960, 6, 127-145.

 

[1] Johann Jakob Balmer (1825 –1898), matematico e fisico-matematico svizzero è ricordato soprattutto per l’equazione empirica che rappresenta lo spettro di emissione dell’idrogeno nel visibile, che ottenne all’età di sessant’anni. La serie di righe nel visibile è nota come serie di Balmer, in suo onore è stato chiamato Balmer anche un cratere della Luna e un asteroide.

[2] J.J. O’Connor, E.F. Roberts, due fra i biografi di Rydberg scrivono che egli pubblicò una nota preliminare intitolata On the Structure of the Line Spectra of Chemical Elements. Preliminary Notice. poi pubblicata nel 1890, in cui l’autore afferma che la sua ricerca ha riguardato solo gli elementi dei gruppi I, II e III della tavola periodica. Questa nota si trova in: Phil. Mag., 1890, 29, 331-337.

[3] Oggi sappiamo che la regola riguarda la massa dell’isotopo più frequente dell’atomo di numero atomico Z.

[4] La storia di questo concorso, i giudizi dei commissari e il perché della quantomeno bizzarra decisione finale sono riportate da O’Connor e Roberts [3]. Vi si può accedere direttamente al link: http://www-groups.dcs.st-and.ac.uk/history/Extras/Rydberg_application.html

[5] Oggi sappiamo che queste righe spettrali sono dovute agli ioni di elementi noti, il nebulium a ioni di ossigeno e azoto, il coronium a ferro fortemente ionizzato [1].

[6] In Rcherches [6] è presentata anche una versione “rettangolare” della tavola che si può trovare anche in The INTERNET Database of Periodic Tables:

http://www.meta-synthesis.com/webbook//35_pt/pt_database.php

[7] Manne Siegbahn, fu successore di Rydberg alla cattedra di Fisica dell’Università di Lund. Premio Nobel per la Fisica 1924 per le sue scoperte nel campo della spettrometria a raggi X.

Worth H. Rodebush e l’elettronegatività

In evidenza

Rinaldo Cervellati

Per imparare la chimica, si procurarono il corso di Regnault ed appresero dapprima che “i corpi semplici sono forse composti”; si distinguono in metalli e metalloidi, differenza “che non ha nulla di assoluto”, dice l’autore; lo stesso vale per gli acidi e le basi “poiché un corpo può comportarsi come un acido o come una base secondo le circostanze”

  1. Flaubert, Bouvard et Pécuchet, Paris, 1881, Chap. 3

Il motivo per cui alcuni elementi mostrano una maggior tendenza a combinarsi fra loro rispetto ad altri è stato oggetto di primario interesse dei chimici fin dalle origini della scienza chimica. Per esempio Etienne Francois Geoffroy (1672-1731) presentò all’Accademia Francese delle Scienze nel 1718 e nel 1720 la Tabula affinitatum (in francese table des rapports).

Figura 1 Tabula affinitatum

Questa tabella era stata compilata sulla base di osservazioni sperimentali sulle mutue azioni delle sostanze l’una con l’altra, riportando i vari gradi di affinità mostrati da corpi analoghi per diversi reagenti (figura 1). La Tabula fu una guida per i chimici fino alla fine del XVIII inizio XIX secolo, quando fu superata dalle idee di C.L. Berthollet (1748-1822) e H. Davy (1778-1829), che misero in relazione l’affinità rispettivamente con le proprietà acido-base e con le proprietà elettriche rispettivamente.

Oggi si ragiona in termini di elettronegatività, che ci fa venire subito in mente Linus Pauling (1901-1994), colui che propose una scala basata sulle energie di legame nell’ambito della teoria quantomeccanica del legame di valenza [1a,b]. Lo storico della chimica Willam B. Jensen fa notare che in nessuna parte del lavoro di Pauling è riportata la definizione del concetto di elettronegatività. Egli ha proceduto come se esso fosse auto-evidente ai suoi lettori, e a buon diritto visto che di elettronegatività i chimici ne discutevano fin da prima della sua introduzione, dovuta a J.J. Berzelius (1779-1848), circa 125 anni prima di Pauling [2]. A proposito di questa lunga storia, scrive Jensen:

Yet this early pre-Pauling history seems to have almost completely dropped out of sight, at least as far as the modern textbook and electronegativity literature are concerned.

The intent of this paper is to try to recapture some of this lost history and, in so doing to remind to modern theorist that those to ignore history always run the risk of repeating it, a cliché no doubt, but unhappily one that embodies a sizable, albeit depressing amount of truth. [2, p. 11]

Non riassumeremo qui la preistoria, rimandando gli interessati al lungo lavoro di Jensen che avrebbe dovuto comprendere tre parti, ma ne risultano pubblicate solo due [2,3]. È importante tuttavia ricordare, come fa Jensen, il contributo di Amedeo Avogadro (1776-1856) allo sviluppo del concetto. Egli fu il primo a notare il parallelismo fra la neutralizzazione di un acido con una base e quella fra una carica negativa e una positiva. Avogadro non solo suggerì che carattere acido o basico erano concetti puramente relativi, ma anche che potevano essere generalizzati per poterli applicare a tutte le interazioni chimiche, sia fra sostanze semplici sia fra composti. Jensen dà ampio spazio al lavoro di Avogadro, con molte citazioni al suo lavoro del 1809. [4]

In un precedente post abbiamo ricordato le proposte di Worth H. Rodebush (1887-1959) riguardo una forma compatta di tavola periodica contenente le informazioni essenziali per comprendere la chimica degli elementi. Nei due articoli che Rodebush pubblicò a tale proposito è però contenuto anche un metodo per quantificare l’elettronegatività. Scrive Rodebush nel 1924:

In ogni caso, con nient’altro che la legge di Coulomb e il concetto di gusci elettronici successivi possiamo prevedere qualitativamente l’elettronegatività di ogni elemento. Avevo sperato che potessimo sostituire l’affinità elettronica e il potenziale di ionizzazione con una qualche valutazione dell’elettronegatività, perché queste quantità vengono misurate allo stato gassoso e le proprietà chimiche ordinarie riguardano prevalentemente fasi condensate. Ad esempio, l’affinità elettronica dell’atomo di cloro è minore del potenziale di ionizzazione del sodio, in modo che un atomo di cloro non potrebbe mai sottrarre l’elettrone all’atomo di sodio, eppure nulla è più sicuro che ciò avvenga formandosi cloruro di sodio. [5, p. 430]

Un anno dopo Rodebush espone la sua proposta per calcolare l’elettronegatività:

Se possibile vorrei introdurre una formula [qualitativa] in una scienza che sta rapidamente diventando esatta, possiamo rappresentare l’elettronegatività in funzione di V/S dove V è il numero di elettroni di valenza e S il numero di gusci nell’atomo. La base di questa formula è la legge di Coulomb e credo che in pochi anni calcoleremo i cambiamenti energetici nelle reazioni chimiche per mezzo di essa. [6, p. 383].

Anzitutto, secondo W.B. Jensen [7], a cui si deve la riscoperta e la rivalutazione del lavoro di Rodebush, nella parola qualitativa della citazione precedente potrebbe esserci stato un errore di stampa per quantitativa, visto che subito dopo è riportata l’equazione V/S che implica appunto una formulazione quantitativa.

Ma sono altri i motivi per cui questa proposta è stata praticamente ignorata dai suoi contemporanei, cercherò di presentare sia quelli dello storico sia alcuni miei personali.

Non c’è dubbio che questo interessante suggerimento sia il risultato di un tentativo esplicito da parte di Rodebush di rendere più rigoroso il concetto di elettronegatività, come aveva già espresso di voler fare un anno prima. Ci si può chiedere quindi perché, dopo aver suggerito questa formula, egli apparentemente non ha fatto nulla di più, anche se ci vogliono solo pochi minuti per calcolare i valori di elettronegatività per gli elementi del blocco principale usando il numero di elettroni di valenza e i gusci di Bohr disponibili nel 1925, come mostrato nella tavola periodica proposta nello stesso articolo [6, p. 382]. Jensen ha fatto questi semplici calcoli ottenendo la tabella riportata in figura:

Figura 2 Elettronegatività (Rodebush) degli elementi del blocco principale [7]

Jensen ha trovato un coefficiente di correlazione r = 0.92 fra i valori in tabella e quelli riportati da Pauling nel suo libro del 1959 [1b], perfettamente in linea con i valori delle correlazioni fra le circa 25 scale moderne proposte per l’elettronegatività.

Certamente vi è un problema nell’applicazione della formula ai metalli di transizione, perché gli elettroni di valenza per questi atomi risiedono in due gusci differenti. L’uso di un numero medio di elettroni per i due gusci fornisce probabilmente risultati coerenti. Un altro problema è che l’equazione di Rodebush fornisce valori troppo bassi per gli elementi post-transizione (Zn, Cd, Hg; Ga, In, Tl) poiché non tiene conto degli effetti degli inserimenti degli elettroni nei blocchi d e f sulle costanti di schermo dei nuclei di questi elementi.

Anche il fatto che Rodebush appaia ironico nella frase riportata in [6, p. 383] e anche un po’ supponente nell’insistere che concetto e formula si basino semplicemente sulla legge di Coulomb, senza ulteriore spiegazioni, come fosse un’ovvietà, potrebbero aver influenzato l’oblio in cui sono caduti i suoi articoli. Ebbene, guardando il blocco principale nella tabella si vede che andando dal basso in alto in una colonna verticale V resta costante mentre S aumenta schermando di più l’effetto attrattivo della carica positiva del nucleo sugli elettroni di valenza, di conseguenza il rapporto V/S diminuisce. Andamento opposto andando da sinistra a destra in una colonna orizzontale dove V cresce mentre S resta costante. È la legge di Coulomb, bambini…

Jensen sostiene che la storia del concetto di elettronegatività sarebbe stata molto diversa se Rodebush avesse adeguatamente sviluppato il suo suggerimento. Avere una scala completa nel 1925, anche solo per gli elementi del blocco principale, avrebbe significato un notevole anticipo rispetto a quanto effettivamente è accaduto. In realtà Pauling, nel suo articolo originale del 1932 forniva i valori di elettronegatività per soli dieci elementi non metallici [1a], quelli per cui erano noti i dati sperimentali delle necessarie entalpie di legame. Nell’edizione del 1939 della sua famosa monografia, La natura del legame chimico, estese la sua scala a 33 elementi, anche se non pubblicò mai i calcoli su cui si basava questa estensione. Nel 1959, con la pubblicazione della terza edizione del libro, apparve finalmente una scala completa [1b].

Pur condividendo le opinioni di Jensen penso che il concetto di elettronegatività e la formula di Rodebush siano stati ignorati perché l’autore non ha voluto presentarli in modo adeguato. Il termine elettronegatività non è esplicitato nei titoli dei due articoli, il primo dei quali è la trascrizione di una conferenza e il secondo viene pubblicato da una rivista nata da poco più di un anno, il Journal of Chemical Education, che inizia le pubblicazioni nel 1924. Inoltre, il brano che riporta l’equazione è al termine dell’articolo che per tutto il resto riguarda una sistemazione compatta della tavola periodica. Il perché di queste scelte non ci è dato sapere, Rodebush ha continuato l’attività di ricerca in termochimica e spettroscopia infrarossa fino alla sua scomparsa.

Lascio invece ai filosofi della scienza commentare questa citazione [8]:

…mentre la definizione di elettronegatività di Rodebush è un esempio di ciò che Ferreira chiama una definizione primaria, vale a dire basata su proprietà atomiche fondamentali e con una chiara giustificazione teorica, la definizione termochimica di Pauling è in realtà un esempio di una definizione secondaria, cioè basata su una correlazione empirica tra una proprietà macroscopica di qualche tipo (nello specifico energie di legame da misure termochimiche) e l’elettronegatività e che pertanto non presenta una chiara giustificazione teorica.

Bibliografia

[1] a) L. Pauling, The Nature of the Chemical Bond. IV. The Energy of Single Bonds and the Relative Electronegativity of Atoms”. J. Am. Chem. Soc.1932, 54, 3570–3582; b) L. Pauling, La natura del legame chimico, Edizioni Italiane, Roma, 1960, pp. 84-109 (trad. italiana sulla 3a ed. americana, 1959)

[2] W.B. Jensen, Electronegativity from Avogadro to Pauli. Part I: Origins of the Electronegativity Concept, J. Chem. Educ., 1996, 73, 11-20.

[3] W.B. Jensen, Electronegativity from Avogadro to Pauling: II. Late Nineteenth- and Early Twentieth-Century Developments, J. Chem. Educ., 2003, 80, 279-287.

[4] A. Avogadro, Idée sur l’acidité, Journal de Chimie, de Physique, d’Histoire Naturelle et des Arts, 1809, 69, 142-148, cit. in [2].

[5] W.H. Rodebush, The Subject Matter of a Course in Physical Chemistry, Science, 1924, 59, 430-433

[6] W.H. Rodebush, A Compact Arrangement of the Periodic Table, J. Chem. Educ., 1925, 2, 381-383

[7] W.B. Jensen, When Was Electronegativity First Quantified? I., J. Chem. Educ., 2012, 89, 94-96.

[8] R. Ferreira, “Electronegativity and Chemical Bonding,” Adv. Chem. Phys., 1967, 13, 55-84, cit in [7].

La tavola periodica “dimenticata” di W. Rodebush

In evidenza

Rinaldo Cervellati

Fra poco più di un anno, ricorre il 150° anniversario della Tavola periodica che è considerata dai chimici la pietra miliare che contiene in forma sintetica la maggior parte di tutta la scienza chimica. Anche l’home page del nostro blog ha come sfondo la tavola periodica.

Nel 1869 il chimico russo Dimitri I. Mendeleev pubblicò una tabella in cui gli elementi fino allora conosciuti erano ordinati in base al peso atomico crescente in gruppi orizzontali e periodi verticali in modo che ad ogni periodo corrispondevano elementi con proprietà fisiche chimiche simili e in ogni gruppo queste proprietà variavano allo stesso modo in cui variano le valenze degli elementi stessi. La tabella fu chiamata Sistema Periodico dallo stesso Mendeleev ed è mostrata in figura 1, tratta dal lavoro originale dell’Autore.

Figura 1

Il lavoro, intitolato Sulla dipendenza tra le proprietà e i pesi atomici degli elementi, fu pubblicato in un’oscura rivista russa [1a] quindi ripubblicato in tedesco sullo Zeitschrift für Chemie [1b]. La genialità di Mendeleev sta non solo nell’aver lasciato caselle vuote dove non trovava elementi che dovevano appartenervi, ma nell’aver previsto i pesi e le proprietà chimiche di questi, che furono poi effettivamente scoperti (ad es. il germanio fra il silicio e lo stagno, ecc.).

Nel 1871, Mendeleev pubblicò la sua tavola periodica in una nuova forma, con i gruppi di elementi simili disposti in colonne piuttosto che in righe, numerate da I a VIII in corrispondenza delle valenze minima e massima dell’elemento (Figura 2) [2].

Figura 2 (le linee tratteggiate indicano elementi ancora sconosciuti)

La tavola non poteva prevedere i gas nobili, tuttavia Mendeleev lasciò uno spazio, e quando quest’intera famiglia di elementi è stata scoperta, William Ramsay (1852-1916) riuscì ad aggiungerli come Gruppo 0, senza che il concetto di base della tabella periodica fosse modificato.

Vale la pena ricordare che tutta la costruzione di Mendeleev è stata concepita come uno strumento empirico, un modo per organizzare gli elementi secondo le loro proprietà in assenza di qualsiasi teoria. La tavola periodica è stata costruita nel 1869, 30 anni prima della scoperta dell’elettrone, 40 anni prima che Ernest Rutherford scoprisse il nucleo atomico e 50 anni prima dell’interpretazione quantomeccanica della struttura atomica. Solo all’inizio del ventesimo secolo il chimico britannico Henry Moseley (1887-1915) scoprì che il ruolo fondamentale della periodicità sta nella carica del nucleo e non nella massa degli atomi. In questo modo, si sono posti limiti precisi su quanti elementi sono rimasti da scoprire.

Nel 1945, Glenn Seaborg, chimico americano, formulò l’ipotesi che il nuovo gruppo di elementi detti attinidi stessero occupando gli orbitali 4f così come i lantanidi avevano riempito il sotto-livello 3f. Propose quindi, una tabella molto simile a quella generalmente più usata oggi (figura 3)[1]. Questo tipo di tabella è usualmente chiamata “compatta”. Nelle tabelle “compatte” gli elementi dei blocchi f (lantanidi e attinidi) sono elencati nella parte inferiore della tavola con un richiamo a uno spazio lasciato vuoto o comprendente i simboli del primo e dell’ultimo elemento del gruppo nel corpo della tabella, v. figura 3.

Figura 3 – Tavola periodica di Seaborg [3][2]

Ma Seaborg non è stato il primo a proporre la tavola periodica in forma compatta. Uno dei primi, se non il primo[3] a fare una proposta simile è stato W. H. Rodebush, di cui abbiamo già parlato, insieme a W.M. Latimer a proposito del legame a idrogeno.

Worth H. Rodebush

Worth Huff Rodebush (1887-1959) è stato uno dei “ragazzi” di G.N. Lewis a Berkeley dal 1914/5 al 1920/1, prima di trasferirsi all’University of Illinois dove diventerà full professor e Direttore del Dipartimento di Chimica Fisica nel 1924. Appassionato alla ricerca e all’insegnamento anche a livello di scuola superiore, nel 1924 tenne una conferenza al Convegno dell’Association for the Advancement of Science Sec. C, pubblicata nella rivista Science [4]. In questa conferenza Rodebush ravvisa la necessità di migliorare la presentazione della tavola periodica, ne indica i punti principali e i principali vantaggi, ma la sua tavola non è riprodotta nel testo pubblicato da Science. Probabilmente una copia fu distribuita a parte ai partecipanti. L’autore pubblica poi un articolo per il Journal of Chemical Education, dove riprende il tema [5]. Scrive Rodebush:

La vecchia Tavola di Mendeleev ha avuto [queste] virtù ma sebbene i suoi difetti siano evidenti alla luce delle recenti conoscenze, essa è ancora generalmente in uso perché non è apparsa alcuna nuova sistemazione che sia semplice e compatta. Alcune tabelle pubblicate di recente hanno il difetto di tentare di mostrare troppi dettagli. Dal momento che il numero di relazioni che esistono tra gli elementi è molto grande… è necessario sacrificare alcune relazioni…   Una soddisfacente sistemazione della tavola periodica deve ottemperare almeno le seguenti condizioni: (1) disporre gli elementi secondo il numero atomico; (2) conservare i periodi di Rydberg[4]; (3) mostrare il raggruppamento degli elettroni intorno al nucleo; (4) mostrare il numero di elettroni di valenza; (5) mostrare le reali somiglianze chimiche; (6) indicare l’entità della proprietà comunemente detta elettronegatività posseduta da ciascun elemento. Tutte le altre relazioni appaiono subordinate a quelle elencate sopra [5, p. 382].

La seguente tabella è un tentativo di sistemazione [compatta].(Figura 4)

Figura 4. La proposta di Rodebush, tratta dal rif. [5], p. 382, redatta a penna

Siamo nel 1924, la meccanica quantistica di Schrödinger e Heisenberg deve ancora essere pubblicata. Rodebush scrive quindi:

Essa [tabella] è basata sulla concezione di Bohr del raggruppamento di elettroni in orbite senza necessariamente accettare il punto di vista di Bohr circa il moto degli elettroni. Tali raggruppamenti siano essi costituiti da elettroni stazionari o in movimento su orbite li chiameremo gusci [shell], secondo la terminologia di G.N. Lewis. [5, p. 382]

Rodebush passa poi a illustrare la sua tabella, costituita da 17 colonne e sette righe o periodi. Non entriamo ulteriormente nel merito, tutte le condizioni da lui indicate sono soddisfatte. In particolare dice:

L’idrogeno è stato posto insieme agli alogeni[5]… il numero di elettroni di valenza per idrogeno e elio è scritto tra parentesi sopra ai simboli degli elementi. La struttura del guscio completo per i gas inerti è mostrata sulla destra. Alcuni preferiscono designare i gusci in ordine alfabetico con le lettere K, L, ecc. Agli elementi i cui atomi sono in grado di assumere la stessa valenza e che mostrano proprietà chimiche molto simili viene assegnata una singola casella nella tavola periodica, ad esempio le terre rare.[5, p.383]

Dalla Figura 4 è chiara l’intenzione di Rodebush di elencare a parte gli elementi della famiglia dei lantanidi (terre rare) nella parte inferiore della tavola.

Sembra addirittura che egli fosse in dubbio se isolare anche le terne (Fe, Co, Ni), (Ru, Rh, Pd), (Os, Ir, Pt) con pesi atomici e caratteristiche chimico fisiche molto simili per rendere la tavola ancora più compatta.

Infine Rodebush così conclude:

Non ho alcuna pretesa di originalità per questa sistemazione, molte variazioni e aggiunte si proporranno al critico. [5, p. 383]

Non sembra che la proposta di Rodebush sia stata rilevante, la sua tabella non compare nell’INTERNET Database of Periodic Tables, il database più completo che raccoglie e aggiorna le centinaia di forme diverse di tavole periodiche da Mendeleev ai giorni nostri [3]. La sua attenzione al riguardo non è menzionata neppure dai suoi biografi C.S. Marvel e F.T. Wall (i due scritti citati qui sono comunque riportati nell’elenco delle pubblicazioni) [6]

Nemmeno Eric Scerri, docente di chimica e storia della chimica all’University of California Los Angeles (UCLA), una autorità mondiale in filosofia della scienza, specializzato in storia e filosofia della tavola periodica, cita i lavori di Rodebush nelle sue principali pubblicazioni [7].

Una brevissima citazione dell’articolo al rif. [5] si trova invece nella II Parte nel lavoro del 1934 di G.N. Quam e M.B. Quam [8], p. 219.

Tuttavia le raccomandazioni di Rodebush sono state accolte da molti estensori di tavole periodiche, in particolare la (6) sull’elettronegatività. Parleremo del contributo dato da Rodebush sull’elettronegatività (anche esso poco noto) in un prossimo post.

Vorrei terminare con una nota di costume. La Tavola Periodica degli Elementi non è un’icona dei soli chimici, in qualche modo è entrata nell’immaginario collettivo. Sono moltissimi i gadget, dalle magliette alle tazze, dai nomi propri costruiti con le sue caselle alle calamite per lo sportello del frigo, fino alle cover per i cellulari. Sono troppi per scegliere un’immagine, vi rimando quindi a:

https://www.google.it/search?q=gadget+tavola+periodica&tbm=isch&tbo=u&source=univ&sa=X&ved=0ahUKEwiV85L0wd7VAhVML1AKHSbjDXUQsAQILA&biw=1366&bih=613

Buon divertimento !

Bibliografia

[1a] D.I. Mendeleev, On the Correlation Between the Properties of Elements and Their Atomic Weight (in russo), Zurnal Russkogo Kimicheskogo Obshchestva 1, no. 2-3 1869 35, 60-77; [1b] D.I. Mendeleev, Über die Beziehungen der Eigenschaften zu den Atomgewichten der Elemente, Zeitschrift fur Chemie, 1869), XII, 405-406

[2] D.I. Mendeleev, Die periodische Gesetzmassigkeit der chemischen Elemente. Annalen der Chemie und Pharmacie, Supplementband, 1871, VIII, 133-229.

[3] The INTERNET Database of Periodic Tables

http://www.meta-synthesis.com/webbook//35_pt/pt_database.php

[4] W.H. Rodebush, The Subject Matter of a Course in Physical Chemistry, Science, 1924, 59, 430-433

[5] W.H. Rodebush, A Compact Arrangement of the Periodic Table, J. Chem. Educ., 1925, 2, 381-383

[6] C.S. Marvel, F.T. Wall, Worth Huff Rodebush 1887—1959, A Biographical Memoir, Biographical Memoir, National Academy of Sciences, Washington D.C., 1962

[7] a) E. Scerri, & McIntyre L, Philosophy of Chemistry: Growth of a New Discipline, Springer, Dordrecht, Berlin, 2015; b) E. Scerri, , The periodic table: Its story and its significance, Oxford University Press, New York, 2007

[8] G.N. Quam e M.B. Quam, Types of Graphic Classifications of the Elements. II. Long Charts, J. Chem. Educ., 1934, 11, 217-223, p. 219

[1] Glenn Seaborg (1912-1999) fu sconsigliato a pubblicare la sua ipotesi in quanto vi era la convinzione che gli attinidi formassero una quarta riga di blocco d. Seaborg non ascoltò il consiglio, il suo suggerimento si dimostrò corretto e nel 1951 gli fu assegnato il Premio Nobel per i suoi lavori sugli attinidi.

[2] La casella 43, lasciata vuota per molti anni, è oggi occupata dal Tecnezio (Tc), il primo elemento prodotto artificialmente, anche se successivamente la sua esistenza in natura è stata dimostrata sia all’interno, sia all’esterno del sistema solare. Anche la 61 è vuota, oggi è occupata dal Promezio (Pm), prodotto artificialmente e radioattivo.

[3] In effetti una forma “compatta”, nota come forma comune o standard, viene attribuita a Horace Groves Deming (1885-1970), un insegnante di chimica americano. Nel 1923, Deming, pubblicò il libro General chemistry: An elementary survey. New York: J. Wiley & Sons., contenente una tavola periodica di 18 colonne e 7 righe in cui le terre rare erano elencate separatamente in basso. La tavola di Deming, molto fitta, riporta numerosissimi dettagli, risultando di difficile lettura [3]. La Compagnia Merck nel 1928 e la Sargent-Welch nel 1930 ne presentarono una forma semplificata che ebbe una larga diffusione nelle scuole americane.

[4] Questo punto non è chiaro. Johannes Robert Rydberg (1854-1819), fisico austriaco è noto soprattutto per la formula che interpreta lo spettro di emissione dell’idrogeno come anche di altri elementi. E’ noto il suo interesse per i pesi atomici e la sua ricerca di un motivo per l’incremento casuale dei pesi atomici nella tavola di Mendeleev, ricerca inutile. Tuttavia ho trovato nell’INTERNET Database of Periodic Tables una tabella periodica del 1913 attribuita a Rydberg, molto sfocata che tuttavia richiama alla mente i periodi.

[5] La posizione dell’idrogeno è ancora oggi oggetto di controversia.

(v. https://en.wikipedia.org/wiki/Periodic_table), Rodebush ritiene che le caratteristiche chimico-fisiche dell’idrogeno siano meno lontane da quelle degli alogeni, in particolare il fluoro, piuttosto che dai metalli alcalini. Deming, per essere equidistante, lo pone in alto, al centro della sua tavola, con due frecce rispettivamente verso il Litio e verso il Fluoro (v. nota 3)

La lunga strada verso i conservanti naturali negli hot dog. Parte II – Il pane

In evidenza

Rinaldo Cervellati.

(la prima parte di questo post è pubblicata qui; ripreso dal n. 31 di Chemistry & Engineering newsletter on line del 25 luglio scorso)

I cibi a breve scadenza come il pane possono richiedere interventi significativi” “se si vuole andare oltre un paio di giorni di conservazione, serve una soluzione per evitare le muffe“, dice Anieke Wierenga della Corbion.

Il pane commerciale ha un odore diverso dal pane da forno perché contiene propionato, un ingrediente poco pericoloso che però non è una sostanza naturale. Se deve essere conservato per pochi giorni, alcuni pani senza additivi sintetici eviteranno di ammuffirsi utilizzando come conservante zucchero fermentato.

Prima che il pane faccia la muffa, in genere diventa stantio o raffermo. Anche se i consumatori sono scoraggiati dall’ammorbidimento del pane raffermo con il latte, come accade in pasticceria, la morbidezza è generalmente associata alla freschezza. L’indurimento del pane è dovuto agli amidi, che ricristallizzano nel tempo. I panificatori a “marchio pulito” utilizzano enzimi per impedire la cristallizzazione degli amidi.

Figura 2. Chimici degli alimenti mentre controllano gli effetti dei conservanti sulla qualità del pane

Il controllo di un pane a base di pasta priva di conservanti deve tenere anche conto della manipolazione della pasta e della cottura. I panettieri commerciali accelerano il processo con ingredienti tipo esteri di mono- e di gliceridi dell’acido diacetiltartarico, noto come DATEM e oli vegetali parzialmente idrogenati che fanno lievitare una pagnotta in breve tempo.

Sul pane commerciale la lista di additivi è lunga ma si sta facendo strada da parte delle aziende nostre clienti, un movimento teso a ridurla”, dice Anieke Wierenga.

Anieke Wierenga

Consultare database di spezie è un modo con cui le aziende alimentari e i loro fornitori di ingredienti cercano conservanti con nomi “naturali”. Label Insight, azienda di database per gli ingredienti, elenca una serie di erbe e spezie comuni che “possono agire come conservanti”. L’analisi delle etichette degli ingredienti su prodotti da forno e salumi ha dimostrato che i produttori si stanno orientando su rosmarino, aglio, zenzero, cannella e chiodi di garofano.

Le aziende alimentari sono consapevoli fino dagli anni ’90 che più di mille piante sono potenziali fonti di composti antimicrobici, molti dei quali agiscono anche come antiossidanti.

Alla Kemin, un’industria di ingredienti alimentari dello Iowa, i ricercatori identificano conservanti naturali selezionando le piante riportate in letteratura anche in relazione alla medicina popolare, come quella a base di erbe cinesi, afferma William Schroeder, direttore del reparto R & S della Kemin. L’obiettivo è quello di trovare piante funzionali che i consumatori possano apprezzare e che siano facili da coltivare. “Abbiamo escluso una bacca che cresce solo in Groenlandia“, dice Schroeder.

Se il Gruppo trova una sostanza vegetale che funziona come antiossidante, cerca di determinare il tipo di azione. Schroeder afferma che gli antiossidanti possono funzionare in uno dei seguenti modi: la chelazione, il sequestro dei radicali liberi o delle specie reattive all’ossigeno.

Una volta che è stata individuata una pianta promettente, ci possono volere anche più di 10 anni per svilupparne un ingrediente alimentare commerciale, dice Schroeder. La Kemin cerca di identificare la molecola o le molecole responsabili dell’azione conservativa e produrre estratti che non siano dannosi alla salute e interferiscano poco o niente con gli aromi degli alimenti a cui verranno aggiunti. Se l’ingrediente non è conosciuto dalla Food and Drug Administration degli USA, la società può chiederne il riconoscimento ma la procedura è piuttosto lunga.

Il rosmarino, che contiene acido carnosico, potente antiossidante, è stato un primo successo della Kemin, secondo Schroeder. L’estratto di rosmarino e i tocoferoli, conosciuti dai consumatori come vitamina E, sostituiscono gli antiossidanti sintetici quali il butil idrossianisolo (BHA) e il terbutil idrochinone (TBHQ). Un esempio più recente è l’estratto di tè verde, che contiene polifenoli antiossidanti e catechine che possono inibire la crescita delle micotossine da funghi.

Poiché l’uso di estratti vegetali come conservanti incontra il favore dei consumatori, nuove aziende alimentari cercano di scavarsi delle nicchie. Per esempio, La Biosecur Lab, con sede a Montreal, è stata fondata nel 2000, ma è entrata nel mercato alimentare solo nel 2011. Sta commercializzando alternative naturali a base di estratti di agrumi, dice il presidente Yves Methot.

Yves Methot

L’anno scorso l’azienda ha introdotto FoodGard, un antimicrobico per frutta, succhi e dolci a base di frutta. “Il nostro momento era giunto: il prodotto era proprio quello che chiedeva il mercato”, continua Methot, “gli estratti esplicano il loro potere antimicrobico per l’alto contenuto di bioflavonoidi e polifenoli”. In combinazione con un carrier di glicerina, l’ingrediente può essere utilizzato in alimenti classificati organici2.

La nostra visione è quella di sostituire sostanze di sintesi, ma possiamo farlo solo se l’azienda alimentare desidera veramente avere una ”etichetta pulita“, sottolinea Methot, “se vogliono solo qualcosa che suoni naturale, non è difficile da realizzare ma i costi sono notevoli”.

La volontà delle aziende alimentari di spendere di più per avere ingredienti da etichette pulite varia a seconda del target. Se l’azienda sta lanciando un nuovo prodotto a marchio pulito, può accettare un costo maggiore per avere l’etichetta pulita“, dice Schroeder della Kemin. Al contrario, per un prodotto già sul mercato l’azienda può non essere incline a pagare di più per la sostituzione di qualche ingrediente nella nuova etichetta.

In alcuni casi, vantare etichette pulite vale il denaro e lo sforzo, afferma Lisa Y. Lefferts, scienziato senior del gruppo di difesa dei consumatori Center for Science in the Public Interest, CSPI. La ricercatrice raccomanda alle aziende alimentari di assegnare la priorità alla rimozione di BHA, nitriti, nitrati, propil gallato, e TBHQ, sostenendo che rappresentano un rischio per la salute, incluso il cancro.

Lisa Lefferts

Ci sono molti modi per garantire la sicurezza alimentare e la scadenza, senza utilizzare conservanti che aggiungono un possibile rischio alimentare.”, dice Lefferts. Suggerisce di sostituire gli antiossidanti sintetici con le vitamine C ed E. Il congelamento, il sottovuoto possono essere soluzioni alternative.

Kantha Shelke, scienziato dell’alimentazione, avverte che i consumatori potrebbero non essere pronti ad adattarsi a tutti i prodotti naturali a causa delle scadenze più corte. Inoltre, è preoccupato che i nuovi ingredienti che vengono immessi devono ancora dimostrare di essere innocui per la salute.

“Molte aziende hanno un additivo ‘speciale’, alcuni sono miscugli misteriosi, e mi interpellano per un parere”, continua Shelke: “Solo perché è naturale o ricavato da una pianta non significa che sia sicuro”.

Courtney Schwartz

Gli esperti concordano comunque che la domanda di ingredienti per etichette pulite sta crescendo. Courtney Schwartz, responsabile delle comunicazioni per le tecnologie alimentari della Kemin, afferma di attendersi che gli estratti vegetali rappresenteranno il 60% delle vendite dell’azienda in cinque anni, a partire da circa un terzo di oggi. “L’etichetta pulita è qualcosa che i consumatori esigono“, dice, Schwartz, “non solo dai marchi premium ma anche dai marchi famosi“.

Brevi considerazioni di RC all’intero post

L’articolo di Melody Bomgarner, prendendo lo spunto da un alimento ampiamente consumato negli USA, ci fornisce la tendenza odierna del consumatore americano medio nei confronti dei conservanti e degli additivi alimentari in generale. Ovviamente la grande produzione, sempre interessata al profitto, cerca di adeguarsi all’orientamento del consumatore e la preoccupazione di Kantha Shelke sulla necessità di indagini più approfondite su possibili effetti negativi dei “nuovi” conservanti “naturali” e sul loro dosaggio resta in secondo piano. Ma, a mio avviso, un altro aspetto della questione è stato trascurato. Mi riferisco alla percezione, a quanto pare sempre più estesa nel pubblico per cui “naturale” è buono e benefico mentre “chimico” è cattivo e maligno. Percezione che ovviamente le aziende si guardano bene da sfatare, il caso del succo di sedano vs. i cattivissimi nitriti è emblematico. Ricordo che anni fa, a un convegno di illustri pedagogisti feci presente che la vitamina C (acido ascorbico), estratta da agrumi (“naturale”) e quella di sintesi (“chimica”) allo stesso grado di purezza, hanno le stesse proprietà, sollevando più perplessità che curiosità…

La lunga strada verso i conservanti naturali negli hot dog. Parte I – La carne

In evidenza

Rinaldo Cervellati.

I consumatori vogliono etichette chiare, ma garantire sicurezza alimentare e lunga scadenza senza conservanti di sintesi è una vera sfida.

Così il sottotitolo del recente articolo a firma Melody M. Bomgarner, apparso sul n. 31 di Chemistry & Engineering newsletter on line il 25 luglio scorso.

Come noto a tutti, hot dog è un termine folkloristico, ormai entrato nell’uso comune, con cui negli Stati Uniti e in Gran Bretagna si indica un insaccato analogo al würstel, generalmente servito all’interno di un panino di forma oblunga, spesso condito con ketchup, maionese o senape,  e talvolta accompagnato da verdure. Meno persone sanno invece che mentre in USA e in Gran Bretagna il termine hot dog indica semplicemente la salsiccia, in molti Paesi Europei questa locuzione si usa esclusivamente per intendere la pietanza nel suo complesso, ossia il panino, l’insaccato e le eventuali salse di accompagnamento. Ciò nonostante l’ingrediente principale dell’hot dog, la salsiccia, è ampiamente commercializzata dalla grande distribuzione praticamente in tutto il pianeta così che un hot dog fatto in casa non si nega a nessuno…

Oscar Mayer, il marchio-icona degli hot dog negli Stati Uniti vanta ora salsicce prive di nitrati, nitriti o altri conservanti artificiali, e la casa madre Kraft Heinz afferma che la tendenza a pretendere etichette chiare e pulite è ormai un fatto assodato.

Greg Guidotti responsabile del marketing, illustrando il lavoro del marchio Oscar Mayer, ha affermato che si è trattato di un’impresa che ha richiesto più un anno di sperimentazioni di ricette per arrivare a un prodotto che, senza aggiunta di additivi sintetici, ha mantenuto lo stesso aroma e lo stesso prezzo delle precedenti versioni.

Greg Guidotti

Ma la ricetta potrebbe cambiare di nuovo. I lettori attenti delle etichette si accorgeranno che i nuovi hot dog (chiamati frankfurters) contengono succo di sedano, una fonte naturale di nitriti, in sostituzione del conservante nitrito di sodio aggiunto nel prodotto precedente. Negli Stati Uniti, le regole di etichettatura permettono che il succo di sedano sia elencato come un aroma naturale, ma è richiesta una dichiarazione di responsabilità in merito all’utilizzo di prodotti naturali contenenti nitriti. Per ora, il succo di sedano è un’alternativa attraente per i produttori di carne perché suona come un cibo piuttosto che un additivo chimico.

Oggi, sia le aziende che gli acquirenti vogliono vedere “nomi riconoscibili sulle etichette”, spiega Anieke Wierenga, direttore senior dell’innovazione alimentare presso la società olandese Corbion e confessa: “Come industria alimentare, non abbiamo la piena fiducia dei nostri consumatori. Vogliono controllarci e sapere cosa c’è dentro ciò che acquistano “.

In figura sono mostrati i principali additivi naturali e sintetici utilizzati nell’industria delle carni lavorate e del pane.

I giganti alimentari tra cui Kraft Heinz, General Mills e Nestlé stanno impegnando tempo e risorse nella rielaborazione delle loro ricette al fine rimuovere i coloranti e gli aromi artificiali per offrire un prodotto più naturale. La modifica dei conservanti richiede costi molto più alti perché nessuno vuole rischiare con la sicurezza alimentare. L’industria sta valutando ingredienti a base di piante, ma potrebbero volerci anni prima di ottenere una soluzione naturale per ogni problema di conservazione degli alimenti.

Gli esperti del settore sottolineano infatti che non è possibile produrre alimenti privi di qualsiasi microrganismo e, anche se non tutti sono dannosi, alcuni batteri o funghi possono produrre enterotossine, aflatossine e tossine botuliniche mortali.

Ecco perché l’industria ha utilizzato (e utilizza) antimicrobici sintetici – nitrato di sodio, benzoato di sodio, propionato e simili – per eliminare tutta una gamma di batteri, lieviti e funghi. Sono poco costosi, ne servono piccole quantità e sono sicuramente efficaci.

Ma l’universo della conservazione è andato oltre gli antimicrobici. Ci sono antiossidanti per evitare l’irrancidimento di grassi e oli, acidulanti che abbassano il pH degli alimenti per regolare l’acidità, e ingredienti che mantengono colore, sapore e umidità durante la conservazione del prodotto.

“La sfida di eliminare conservanti sintetici a favore di quelli naturali è enorme”, spiega Kantha Shelke, scienziato alimentare e consulente dell’istituzione privata Corvus Blue che si occupa di ricerca e sviluppo di additivi, “l’industria alimentare non è ancora ben consapevole, anche se sta impegnandosi su questa strada”.

Per soddisfare i requisiti del marchio pulito, la Corbion Food Ingredients ha accelerato i suoi sforzi di ricerca e sviluppo. Dice Anieke Wierenga, direttore senior della Corbion: “Prima di ‘etichetta pulita’ potevamo offrire solo uno o due prodotti per soddisfare questa necessità, ora l’offerta per i clienti è più di dieci prodotti all’anno”.

In alcuni casi, un ricercatore può sviluppare ingredienti naturali per vedere poi che le preferenze dei consumatori cambiano di nuovo. Ad esempio, la Corbion ha prodotto acido lattico di fermentazione naturale per controllare la Listeria[1] nei prodotti a base di carne. Ma di recente, le aziende del settore alimentare hanno scoperto che i lattati non soddisfano i criteri di “naturalità” di molti consumatori. Questi preferivano l’acido acetico, etichettato come aceto.

Il problema è che l’aceto ha un sapore aspro, a differenza dei lattati che sono quasi senza sapore, tuttavia le ricette di alcuni alimenti dovevano essere rinnovate per tener conto di entrambe le necessità.

“Ora i nostri clienti vengono da noi prima del processo di formulazione dei prodotti alimentari con la convinzione che possiamo aiutarli”, dice Anieka, affermando: “Il team R & D della Corbion ha sviluppato aceti personalizzati, alcuni con destrosio fermentato, per fornire il giusto profilo sensoriale e tenere sotto controllo la Listeria.”

Gli ingredienti che la Corbion utilizza insieme all’aceto per la conservazione dei prodotti a base di carne includono l’estratto di tè al gelsomino, un antiossidante, e agrumi in polvere che impediscono la fuoriuscita di umidità dal prodotto.

Se i consumatori dovessero individuare il succo di sedano come fonte di nitriti negli hot dog e in altri prodotti a base di carne macinata, i produttori vivranno un momento difficile. L’uso di nitriti in carni macinate è stato bandito perché possono formare nitrosammine che causano il cancro. L’effetto sanitario è lo stesso indipendentemente dalla provenienza dei nitriti.

“Sostituire i nitriti, è difficile”, ammette Wierenga, “dato che svolgono un ruolo importante nel prevenire la formazione della tossina botulinica. “L’industria è abbastanza lontana dalla soluzione di questo problema”.

Una strategia per avvicinarsi alle “etichette pulite” è sostituire alcuni conservanti sintetici con ingredienti naturali, mantenendo comunque uno o due dei vecchi conservanti, e questa strategia è nota come ‘approccio misto’.

“Forse si potrebbe prevedere un declino dell’uso di prodotti contenenti conservanti sintetici a favore di quelli formulati con conservanti naturali, ma non lo abbiamo notato con i nostri prodotti”, afferma Paul Hogan, vice presidente della Emerald Kalama Chemical, produttore di conservanti a base di benzoati. A sostegno dell’affermazione, Hogan riporta una ricerca di mercato secondo cui dal 2012 al 2016 il numero di nuovi prodotti alimentari contenenti benzoato di sodio è aumentato dell’86%, a fronte delle richieste di conservanti naturali aumentata del 69%. Poiché la dicitura “tutto naturale” su un’etichetta alimentare non è legale negli Stati Uniti, le decisioni relative alla “naturalità” degli ingredienti sono lasciate al marchio alimentare. Al contrario, l’uso di prodotti sintetici per la conservazione non è consentito negli alimenti certificati come organici[2].

I condimenti, che tendono a rimanere nelle cucine dei consumatori per mesi, se non anni, beneficiano dell’approccio misto, dice Hogan. La senape spesso contiene sia l’aceto che il benzoato di sodio perché “l’aceto da solo non fornisce il livello di controllo microbico necessario per prevenire il deterioramento causato da una lunga conservazione”.

[1] La Listeria è un batterio Gram-positivo che produce una tossina pericolosa per la salute.

[2] Lascio il termine inglese “organic” perché tutte le volte che sento dire o vedo scritto “biologico” o “bio” metterei mano a una pistola, come disse un tizio da cui peraltro sono lontano anni-luce…

Perle e ossa.

In evidenza

Rinaldo Cervellati.

Nell’ultimo numero di C&EN newsletter (on line, 2/8/2017), Melissae Fellet informa che un team di ricercatori scozzesi ha chiarito il meccanismo attraverso cui la madreperla favorisce la crescita delle ossa. L’articolo, fra gli accettati per la pubblicazione su ACS Nano (DOI: 10.1021/acsnano.7b01044), si intitola Nacre Topography Produces Higher Crystallinity in Bone than Chemically Induced Osteogenesis, è firmato da un gruppo di ricercatori dell’Università di Glasgow, coordinati dai Prof. Matthew John Dalby (UG) & Maggie Cusack (University of Stirling).

 

Mattew John Dalby                               Maggie Cusack

La scoperta di impianti dentali interamente integrati a base di conchiglie nei crani di antichi Maya ha avviato una serie di ricerche che hanno mostrato come piccoli pezzi di madreperla, il rivestimento iridescente delle conchiglie delle ostriche[1] e di altri molluschi, inducono la formazione di ossa in sia in colture cellulari sia in modelli animali come pure nella ricostruzione della mascella umana. Restava però oscuro il meccanismo di azione della madreperla. Infatti la madreperla è un minerale a base di carbonato di calcio con una struttura diversa rispetto al minerale principale delle ossa, ossia il fosfato di calcio. Studi hanno dimostrato che polvere di madreperla induce le cellule staminali a produrre fosfato di calcio. Tuttavia, le cellule staminali rispondono anche a segnali fisici come urti nanoscopici e nanocreste sulle superfici del materiale. Per separare l’effetto della composizione chimica della madreperla dalla sua struttura superficiale, il Gruppo guidato da Cusack e Dalby ha deciso di riprodurre il modello nanoscopico di madreperla su un materiale diverso. Innanzitutto, i ricercatori hanno ricoperto l’interno di una conchiglia di ostrica con un polimero di silicone, spalmandolo uniformemente, quindi lo hanno rimosso.

Stampo siliconico in conchiglia d’ostrica

Lo stampo polimerico risultante è stato poi ricoperto con policaprolattone fuso, un polimero biocompatibile. Dopo la solidificazione e rimozione dello stampo siliconico, la squadra ha utilizzato la microscopia elettronica tridimensionale a scansione per controllare di aver ricostruito la struttura a superficie nano scabrosa della madreperla sulla superficie del polimero.

Quindi, i ricercatori hanno coltivato le cellule staminali mesenchimali umane sulla replica polimerica. Dopo cinque settimane, le cellule hanno aumentato l’espressione di geni legati allo sviluppo osseo rispetto alle cellule coltivate su una superficie liscia dello stesso polimero, indicando che la stimolazione della crescita ossea è dovuta alla sola struttura della madreperla.

Per studiare l’effetto di diversi stimoli fisici e chimici sull’osso in crescita, la squadra ha stimolato la coltura delle cellule staminali sulla madreperla naturale di un’ostrica, sulla replica polimerica, e su una matrice strutturata in polimetilmetacrilato noto per aiutare la crescita ossea. Inoltre, sono stati effettuati esperimenti con cellule utilizzando due diversi metodi di coltura delle cellule stesse. L’osso si forma in tutte le condizioni, ma risposte metaboliche diverse hanno indicato che l’osso prodotto potrebbe avere proprietà diverse nei diversi casi.

La spettroscopia Raman ha rivelato che le cellule coltivate sulla replica polimerica della madreperla hanno dato luogo all’osso più cristallino fra tutte le condizioni sperimentate.

La cristallinità è solo una proprietà che può influenzare la resistenza ossea, dice Cusack, e fra di esse non vi è purtroppo una relazione semplice. Sapendo che la struttura fisica della madreperla influenza la cristallinità, i ricercatori potrebbero variare le asperità del modello polimerico e studiare i cambiamenti delle proprietà ossee, insiste Cusack. Essere in grado di modificare questa proprietà in vitro potrebbe permettere ai ricercatori di ottimizzare le caratteristiche complessive dell’osso da impiantare ai fini di specifiche applicazioni.

Un problema nell’interpretazione di questi primi esperimenti potrebbe provenire dalla struttura mutevole della madreperla, osserva critico Daniel Chappard, un ricercatore in rigenerazione ossea e biomateriali all’Università di Angers (Francia). Una sua ricerca dimostra che la madreperla naturale altera la sua struttura cristallina in colture cellulari cresciute in media diversi. Quindi, il modello di superficie polimerica potrebbe non essere lo stesso che le cellule sperimentano quando vengono coltivate sulla superficie del materiale naturale.

Tradotto e adattato da C&EN newsletter, 2017, 95(32), 7.

 

 

 

[1] Per esattezza ostrica Pinctada maxima.