Quel nostro ingegnoso collega: Leo Baekeland.

In evidenza

Giorgio Nebbia.

“Sappi che l’avvenire è racchiuso in una sola parola, una sola: plastica”. Nel celebre film “Il laureato”, di Mike Nichols (1967) è questo il consiglio che un amico di famiglia dà al giovane Braddock (Dustin Hoffman), durante la sua festa di laurea, per indicare dove orientare il suo futuro di lavoro.

La frase rifletteva il pensiero corrente nell’età dell’oro della plastica; si può ben dire che il Novecento è stato segnato dai nuovi materiali sintetici che, del resto, sono “nati”, si può dire, proprio agli inizi del secolo scorso, nel 1906.
A quell’anno infatti risale il brevetto americano n. 942.699 depositato da Leo Baekeland (1863-1944), per un nuovo materiale ottenuto dalla combinazione del fenolo con la formaldeide. Quando fece la rivoluzionaria invenzione “della plastica” questo Leo Baekeland era già un personaggio speciale. Nato in Belgio da modesta famiglia, si era laureato in chimica, poi si era trasferito negli Stati Uniti, animato dalla passione per le invenzioni, e per il successo economico.

Leo Baekeland (1863-1944)

Baekeland aveva già inventato una carta fotografica, chiamata Velox, con la quale era possibile sviluppare le fotografie anche alla luce artificiale, una innovazione molto importante perché fino allora le fotografie potevano essere sviluppate soltanto alla luce del Sole; per la produzione di questa carta Velox aveva fondato la società Nepera. George Eastman (1854-1932), altro imprenditore nato povero che aveva fatto una fortuna con l’invenzione della macchina fotografica popolare Kodak, capì l’importanza dell’innovazione e acquistò nel 1899 la Nepera e i brevetti Baekeland per un milione di dollari, una cifra allora favolosa.

Ma intanto altri problemi richiamarono l’attenzione di Baekeland; la fine dell’Ottocento era stata caratterizzata dall’espansione dell’elettricità; le forze del calore e del moto delle acque potevano essere trasformate in elettricità mediante dinamo e l’elettricità poteva azionare le macchine mediante motori elettrici e l’elettricità poteva arrivare dalle dinamo ai motori e agli impianti di illuminazione e nelle città e nelle fabbriche e ai telegrafi mediante fili di rame. Per evitare dispersioni e perdite nelle dinamo e nei motori i fili elettrici erano rivestiti con la gommalacca, una sostanza resinosa che esce dai rami di alcune piante in seguito alla puntura di una cocciniglia, l’insetto Laccifera lacca, che va a deporvi le uova. L’aumento della richiesta aveva reso la gommalacca scarsa e costosa e Baekeland cercò di ottenere un surrogato artificiale.

Qualche anno prima, durante le ricerche per la sintesi dell’indaco, il grande chimico tedesco Adolf von Baeyer (1835-1917) aveva osservato che dalla reazione del fenolo, un liquido derivato dalla distillazione del catrame di carbone, con la formaldeide, un sottoprodotto della distillazione secca del legno, si formava un residuo resinoso e appiccicoso che rappresentava uno scarto inquinante; partendo da questo rifiuto Baekeland studiò a fondo la reazione fra fenolo e formaldeide e osservò che il materiale resinoso risultante era un buon isolante elettrico e rappresentava il surrogato ideale della gommalacca. Si trattava della prima vera macromolecola artificiale e quindi era la prima materia plastica.

La resina fenolo-formaldeide non si rivelò soltanto adatta come vernice e isolante elettrico. Nel 1907 si scoprì che, miscelando la resina con farina fossile, si otteneva una materia solida, stampabile a caldo, che fu chiamata bachelite e che ebbe un grande successo per oggetti domestici, telefoni, apparecchiature elettriche, eccetera. Baekeland creò la società “Bakelite” per la fabbricazione e commercializzazione delle resine fenolo-formaldeide (la società fu venduta successivamente al gigante chimico Union Carbide).

Gli anni successivi videro molti altri successi della materia scoperta da Baekeland; mentre cercavano dei surrogati per la mica, il minerale usato come isolante elettrico in sottili fogli, alcuni scoprirono che una materia adatta allo stesso scopo, che fu chiamata “For-mica” (al posto della mica) si otteneva miscelando resine fenolo-formaldeide con segatura o polvere di legno; da questa scoperta derivarono i laminati plastici denominati “formica” ancora oggi usati, partendo da resine diverse.

Leo Baekeland, che era stato, oltre che scienziato e inventore, un fortunato e abile imprenditore, morì nel 1944 nella sua villa vicino New York.

Ormai si parla di resine fenoliche per indicare molte materie plastiche sintetiche termoindurenti ottenute facendo reagire con formaldeide o con altre aldeidi, il fenolo e i cresoli, con addizione di vari materiali di carica. Benché non siano fra le più diffuse materie plastiche commerciali, sono usate ancora per molti oggetti di uso comune e addirittura alcuni stilisti ne stanno riscoprendo alcune virtù estetiche.

Ho voluto raccontare questa storia perché offre l’occasione di alcune considerazioni; molte invenzioni sono nate alla ricerca di surrogati di materiali diventati scarsi e costosi; molte invenzioni sono nate osservando le proprietà di cose buttate via, rifiutate; molti inventori erano nati poveri e sono diventati persone di successo perché tenevano gli occhi aperti sul mondo circostante. Pasteur disse una volta che il caso aiuta la mente preparata.

Che cosa potremmo fare per aiutare tanti giovani, scoraggiati e disoccupati, ad aprire gli occhi su un mondo che è ancora pieno di cose da scoprire, di scarti da trasformare in oggetti utili, e in occasioni di lavoro e di benessere anche personale ?

 

Intercalazione e altre storie. 1.

In evidenza

Claudio Della Volpe.

Dato che il nostro blog vuole occuparsi soprattutto di chimica dell’antropocene dobbiamo in qualche modo fare spazio a quei concetti di chimica, una volta considerati avanzati, ma che oggi costituiscono la base di molte delle applicazioni antropoceniche della chimica. L’intercalazione è uno di questi. Nel discuterne l’aspetto scientifico e tecnico troveremo, quasi naturalmente, i motivi per cui chimica e società ci appaiono così strettamente connesse.

Una delle parole entrate più di recente (si fa per dire eravamo comunque negli anni 60 del secolo scorso) nel linguaggio dei chimici è : intercalazione.

La inventò Lerman, un biologo USA. analizzando il caso delle acridine, molecole aromatiche, che interagivano col DNA intercalandosi fra le basi del DNA, distorcendole dunque inducendo effetti mutageni; oggi trovate il termine nel linguaggio ufficiale della chimica: http://goldbook.iupac.org/I03077.html.

intercalaz1Tuttavia intercalazione è anche quella che dà luogo a composti veramente curiosi, come per esempio il potassio metallico che si intercala fra gli strati della grafite formando un composto dalla formula KC8 o il litio, che in analoghe circostanze forma un LiC6. Ioni diversi possono co-intercalare con effetti reciproci che possono essere anche molto interessanti.

intercalaz2L’intercalazione si può immaginare come una interazione mediata da un legame “a trasferimento di carica”, una parziale donazione di carica fra gli orbitali di frontiera degli atomi coinvolti, dall’HOMO di uno al LUMO di un’altro.

Questi composti sono alla base di molte moderne applicazioni elettrochimiche, come per esempio le batterie al litio ricaricabili.

Nelle batterie al litio lo ione litio viene sostanzialmente pompato contro il suo gradiente di potenziale elettrochimico da un ambiente ad un altro in fase di carica. In particolare il litio può essere spostato dalla cobaltite (un ossido misto di litio e cobalto) verso la grafite durante la fase di carica e tornare verso la cobaltite nella fase di scarica. Lo ione viaggia attraverso la soluzione elettrolitica mentre gli elettroni, come in ogni processo elettrochimico, viaggiano attraverso il circuito esterno; dunque il litio si libera dell’elettrone, si “ossida” sull’elettrodo di grafite e si “riduce” sull’elettrodo di cobaltite, come si può vedere in figura:

intercalaz3Ma se il litio si “ossida” e si “riduce” sui due lati rimanendo però sempre nella sostanza uno ione positivo, quale è il motore del processo? Nelle comuni batterie gli ioni coinvolti sono quelli che si ossidano e si riducono, qui sembra di no. Come riconciliare questa descrizione con le conoscenze comuni di elettrochimica?

Possiamo visualizzare il processo in due modi diversi; in uno meno formale il litio abita i due contesti dei due elettrodi e si sposta fra due potenziali (elettro)chimici diversi; una stessa specie in entrambi gli elettrodi. E il processo non dipende dal suo stato di ossidoriduzione, che rimane il medesimo, ma dal potenziale chimico dei due sistemi, più basso nella cobaltite, più alto nella grafite.

In modo più formale possiamo attribuire al contesto, al resto degli atomi, non al litio, la variazione dello stato di ossidazione: nel contesto della grafite il carbonio acquisisce una carica formale -1/6, oscillando fra 0 e -1/6, mentre nella cobaltite, un’ossido misto CoLiO2, il cobalto oscilla fra due stati +3 in presenza del litio intercalato e +4 in sua assenza, con l’avvertenza che la deplezione di litio dall’elettrodo non può superare il 50% per rimanere un processo reversibile, con tutte le variazioni di volume e di densità che comportano un notevole comportamento a fatica che a lungo andare distruggerà comunque entrambi gli elettrodi.

Come in molte altre batterie ricaricabili (quelle basate su elettrodi allo stato solido) occorre che non tutto il reagente che mettiamo in gioco reagisca se vogliamo che il processo possa essere effettivamente invertito. Solo le batterie con reagenti allo stato liquido e in cui la parte solida funga solo da catalizzatore, possono sfuggire a questa regola e non portare quote morte di reagente (per esempio le batterie al vanadio meglio conosciute come batterie in flusso, flow batteries).

In questo modo possiamo anche interpretare correttamente come anodo la grafite, poichè in fase di scarica il carbonio nell’anodo si ossida da -1/6 a 0, inviando elettroni, mentre il cobalto si riduce da +4 a +3 accettando tali cariche al catodo. Viceversa in fase di carica.

E’ da notare che in condizioni tipiche il rapporto fra atomi intercalati e strati di grafite è tipico di composti non-stechiometrici, ossia che non seguono le leggi usuali di combinazione della chimica, poichè solo alcuni strati o alcune porzioni sono interessati all’intercalazione.

In definitiva l’intercalazione ha espanso l’insieme dei numeri di ossidazione del carbonio (e di altri atomi) a valori frazionari, che raramente sono considerati nelle presentazioni basiche di questo concetto.

Questo meccanismo di funzionamento delle batterie al litio (almeno di alcune) chiarisce due ordini di cose; da una parte a differenza delle tradizionali batterie non esiste un solo potenziale tipico di queste batterie, perchè in effetti ogni coppia di elettrodi fa storia a se e corrisponde ad un salto di energia differente.

Ma non solo; questo spiega l’interesse tecnologico ed economico per le altre specie chimiche coinvolte in questi materiali. Sui giornali degli ultimi giorni qualcuno avrà notato degli articoli che raccontavano la storia del rastrellamento del cobalto sul mercato mondiale.

Gli elettrodi di cobaltite, composto ormai di sintesi perchè non ne esiste più di naturale, sono quelli che in coppia con la grafite producono la più alta differenza di potenziale, ma sono anche quelli che più facilmente danno luogo a problemi di surriscaldamento in fase di ricarica (un fenomeno che va sotto il nome di effetto runaway). Tuttavia il cobalto costituisce comunque un componente importante delle moderne batterie al litio; proprio per questo si pensa che il raddoppio del prezzo del cobalto negli ultimi mesi sia la conseguenza di un rastrellamento del prodotto sul mercato mondiale da parte di pochi operatori che intendono controllare il mercato dell’energia in questo modo.

La Repubblica Democratica del Congo produce quasi la metà del cobalto a livello mondiale. Il cobalto lavorato viene venduto a tre aziende che producono batterie per smart phone e automobili in Cina e in Corea del Sud. Queste ultime riforniscono le aziende che vendono prodotti elettronici e automobili in Europa e in America.

Il cobalto è estratto dai residui di lavorazione di altri metalli e le formazioni più ricche sono in Congo.

Insieme con i prezzi del litio anche il cobalto e la grafite stanno andando alle stelle e sono al centro della speculazione finanziaria.

In un mondo che ha sempre più fame di energia e risorse, il controllo sociale di queste risorse diventa sempe più necessario. Quando qualcuno si lamenta dei flussi crescenti di migranti di colore dall’Africa si dovrebbe ricordargli che per dare a lui un telefonino di ultima generazione si sta sacchegiando la terra d’Africa (oltre il cobalto anche il tantalio, il coltan viene dallAfrica) e le guerre e le migrazioni sono indotte anche da questo furto di ricchezza ai danni delle giovani generazioni di quei paesi. C’è un costo sociale dell’energia, che paghiamo in questo modo, che la grande speculazione ripartisce sui consumatori specie europei e sui giovani africani, costretti dalle guerre e dalla distruzione dell’ambiente, oltre che dal cambiamento climatico e dalla povertà, a lasciare la loro terra.

 

Inquinanti organici e loro effetti negli impianti di depurazione.

In evidenza

Mauro Icardi.

L’interesse per i microinquinanti organici, in particolare per gli effetti che essi possono esercitare sull’ambiente è al centro di ricerche, convegni e studi non solo nella comunità scientifica, ma anche tra gli addetti alla gestione operativa degli impianti di depurazione e di potabilizzazione. Molti di questi composti organici sono di origine sintetica, possono avere proprietà mutagene, carcinogene o teratogene anche a livelli di concentrazione molto bassi (ppb-ppt, ossia parti per miliardo, 10-9

o parti per biliardo,10-12).
Generalmente questo tipo di sostanze costituisce una parte abbastanza limitata del contenuto organico totale di uno scarico (circa 1%-2%) e conseguentemente i saggi di routine aspecifici come COD, TOC, BOD risultano poco significativi per il controllo della loro efficienza di rimozione, in special modo per impianti di depurazione biologica meno recenti e non dotati di un trattamento terziario delle acque depurate prima dello scarico nel corpo idrico finale (filtrazione su sabbia o su carboni attivi, oppure ossidazione con lampade UV.)
Per quanto riguarda l’origine dei microinquinanti di questo tipo essi possono provenire sia dalla rete fognaria, sia dal dilavamento di suoli sia da precipitazioni atmosferiche. Anche i processi di clorazione finale delle acque trattate o il condizionamento del fango tramite polielettroliti organici possono rappresentare fonti puntuali di sostanze organiche inquinanti.

depuratore

Dal punto di vista della loro determinazione analitica la fase importante è quella del loro isolamento e concentrazione ancor prima della loro determinazione strumentale. Le tecniche solitamente sono quelle di concentrazione tramite evaporatore rotante o colonnine di preconcentrazione.
Per quanto riguarda le concentrazioni presumibilmente riscontrabili, mentre gli inquinanti organici che arrivano attraverso la rete fognaria di solito raggiungono concentrazioni più elevate (mg/lt per i tensioattivi per esempio) microgrammi/litro per solventi, quelli che affluiscono all’impianto di depurazione per percolazione o per dilavamento atmosferico (fonti diffuse) hanno normalmente valori di concentrazione più bassi (microgrammi/litro o picogrammi litro).
Per quanto riguarda i principali processi di rimozione in un impianto di trattamento di acque di rifiuto si distinguono quattro principali tipi di di processi.
Adsorbimento sul fango: questo processo dipende dalla concentrazione del fango biologico misurata come carbonio organico e dalla lipofilicità del composto organico. Per quest’ultimo parametro può essere utile utilizzare il coefficiente di ripartizione ottanolo/acqua (Kow) dalla solubilità in acqua.
In passato diversi studi hanno mostrato che la rimozione di composti organici per adsorbimento diventa significativa per valori di log Kow > 4
Altro fenomeno che può intervenire nella degradazione è quello di stripping. Questo effetto risulta lievemente maggiore in impianti con areatori superficiali (turbine) . L’esperienza e studi di laboratorio hanno mostrato che composti con punti di ebollizione inferiori a 150 ° C riescono in qualche misura ad essere volatilizzati con questo tipo di meccanismo durante un normale processo di trattamento biologico a fanghi attivi.
Degradazioni di tipo chimico possono avvenire principalmente per idrolisi. L’effetto di degradazione fotochimica è invece assai poco rilevante. Questo a causa della bassa efficienza di trasmissione della luce sia nell’acqua inquinata che nella stessa vasca biologica di trattamento, che sono di per sé anche dal punto di vista analitico matrici piuttosto complesse.
Il meccanismo principale di funzionamento di un depuratore biologico a fanghi attivi è però la degradazione biologica. In questo caso la previsione e la standardizzazione del comportamento di questi inquinanti è maggiormente variabile. Influiscono non solo le caratteristiche chimico fisiche degli inquinanti, ma anche i periodi di acclimatamento della biomassa, gli eventuali effetti di accumulo. Le biodegradbilità sono quindi variabili. Da composti che mostrano spiccata attitudine alla biodegradabilità, ad altri che invece risultano invece refrattari nonostante lunghi periodi di acclimatazione della biomassa.
Un terzo tipo di composti mostra biodegradabilità fortemente variabili ed influenzate non solo dalla sorgente di inoculo batterico, ma anche dalle caratteristiche di gestione e di modalità di operazione gestionali dell’impianto. Questa caratteristica rimane di fatto costante dalla modalità di prove in scala di laboratorio, di impianto pilota, fino all’impianto reale.
Negli anni passati su un inquinante non particolarmente critico e presente normalmente nelle acque di scarico come l’alchilbenzensolfonato lineare (LAS) che non è particolarmente refrattario si è visto sia nelle prove di laboratorio, e in seguito applicando i risultati di queste ultime nella gestione ordinaria dell’impianto si potevano ottenere abbattimenti dell’ordine del 75-80% rispetto alla concentrazione del LAS nelle acque in ingresso all’impianto.

abs

La rimozione per adsorbimento su fango riusciva mediamente ad abbattere il 20% del LAS, e la restante quantità tramite degradazione batterico-enzimatica. La degradazione del LAS non risultava influenzata dal carico organico (inteso come valori di COD e BOD) ed era sufficiente un tempo di ritenzione in vasca di ossidazione che non scendesse al di sotto dei tre giorni. Anche il frequente ricambio della biomassa in vasca di ossidazione con una regolazione mirata dello spurgo fanghi manteneva costante l’abbattimento.
Oggi la situazione si presenta decisamente più complessa. In particolar modo per la presenza piuttosto rilevante di metaboliti di farmaci, di moltissimi composti di sintesi e delle loro miscele nelle acque di rifiuto da destinare al trattamento
Occorre quindi una sinergia globale tra enti preposti al controllo, gestori ed autorità d’ambito. La perizia dei gestori di impianti, il gran lavoro di ricerca a livello universitario e degli stessi gestori deve essere adeguatamente supportato da investimenti importanti e da una trasformazione del sistema della gestione della risorsa idrica. Altrimenti ogni sforzo sarà di fatto inutile. Fermo restando il concetto (rimarcato recentemente anche da Papa Francesco) sulla necessità assodata di considerare l’acqua e la sua disponibilità in quantità adeguate e di qualità come un bene primario ed un diritto essenziale per gli esseri umani e per la loro sopravvivenza sul pianeta.

– B Hultmann, Removal of specific pollutants in biological waste water treatment
Water pollution Research Report n° 6 ,EUR 11356 Brussel 1988
-P.L MC Carty and M Reinhard, Statistical evaluation of trace organics removal by advance waste water treatment
P.V. Roberts, Volatilization of organic pollutants waste water treatment _ Model studies. Draft Final Report EPA-R -806631, Cincinnati Ohio, 1982

L’elio forma molecole stabili ad alte pressioni

In evidenza

Rinaldo Cervellati

Gli autori di libri di testo di chimica potrebbero presto dover riscrivere i capitoli sui gas nobili e l’inerzia chimica, commenta Mitch Jacoby nel riportare, per c&en newsletter, la notizia della sintesi di un composto di elio e sodio stabile ad alte pressioni, ottenuto da un team di ricercatori internazionale. Il gruppo, una ventina di ricercatori in prevalenza russi, cinesi e americani con alcuni europei fra i quali l’italiano Carlo Gatti, ha recentemente pubblicato i dettagli della ricerca (Xiao Dong et al., A stable compound of helium and sodium at high pressure, Nature chemistry, 2017 on line 6 february 2017, DOI: 10.1038/nchem.2716).

La caratteristica più nota dell’elio è stata la sua assenza di volontà di reagire. Con una configurazione elettronica stabile, affinità elettronica tendente a zero e una energia di ionizzazione superiore a quella di tutti gli altri elementi, l’elio è il prototipo dell’inerzia chimica.

Per esaminare la scarsissima reattività di questo elemento, gli scienziati hanno tentato sia attraverso metodi teorici sia sperimentali di individuare le condizioni per ottenere composti dell’elio. Con scarso successo, almeno fino a oggi, ottenendo solo specie insolite, come il radicale HeH+, stabile solo nella sua forma positivamente carica, e HHeF, una molecola metastabile. Al contrario, è noto da molto tempo che i gas nobili a più elevato peso atomico, xeno e cripto, sono in grado di formare una varietà di composti stabili. In particolare i fluoruri di xeno: XeF2, il difluoruro, è il più stabile, si presenta come un solido cristallino bianco molto sensibile all’umidità, disponibile commercialmente e usato nelle reazioni di fluorurazione. Il tetrafluoruro, XeF4 è stato il primo composto di un gas nobile a essere sintetizzato nel 1962 (H. H. Claassen, H. Selig e J. G. Malm, Xenon Tetrafluoride, J. Am. Chem. Soc., 1962, 84, 3593), si presenta pure come solido cristallino sensibile all’umidità, molto più reattivo del difluoruro. L’esafluoruro, XeF6, è ancora più reattivo potendo funzionare sia come donatore sia come accettore di ioni fluoruro.

Il team internazionale di ricerca, coordinato dai Prof. Artem R. Oganov (Skolkovo Institute of Science & Technology, Mosca; Stony Brook University, USA), Xiang-Feng Zhou (Nankai University, Tianjin, Cina; Chemistry Division, Brookhaven National Laboratory, NY USA), Hui-Tian Wang (Nankai University, Tianjin, Cina), ha continuato e ampliato la ricerca di composti stabili dell’elio.

fig-1a-oganov

Oganov

fig-1b-xiang-feng-zhou

xiang-feng-zhou

Il gruppo ha usato una strategia computazionale nota come previsione della struttura evolutiva (USPEX) per individuare gli scenari di interazione elio-sodio in una vasta gamma di pressioni. La conclusione è stata che Na2He dovrebbe essere termodinamicamente stabile a pressioni superiori a circa 115 GPa, cioè più di 1 milione di volte superiore a quello della pressione atmosferica della Terra.

Per realizzare gli esperimenti i ricercatori hanno utilizzato una cella a incudini di diamante (DAC) che permette di raggiungere altissimi valori di pressione, ottenendo infine il composto cercato. In breve, e con riferimento allo schema di figura 2:

fig-2-schema-apparato-sperimentaleuna cella ad incudini di diamante è formata da due diamanti tagliati a forma di tronco di piramide con punta molto fine in modo da esercitare una fortissima pressione. Il campione (cioè l’oggetto in questione), che in condizioni normali può essere sia solido, che liquido o gassoso, di dimensioni opportune, viene posto tra le facce piane dei due diamanti naturali, e mantenuto in questa posizione mediante una guarnizione metallica, anch’essa schiacciata tra i diamanti. I due diamanti sono poi pressati uno contro l’altro e così facendo esercitano una grande pressione sul campione posto nel mezzo. Si usano i diamanti naturali perché essi sono gli oggetti più duri che esistono in Natura e non si danneggiano a causa delle altissime pressioni che producono. Si possono così studiare, in condizioni estreme, sistemi di grande importanza in fisica fondamentale, in geologia, in scienza dei materiali e in astrochimica.

Il composto Na2He è stato caratterizzato per diffrattometria a raggi X, spettroscopia Raman e altri metodi. Il gruppo di ricerca riporta che la sua struttura è simile a quella del minerale fluorite, è elettricamente isolante e rimane stabile fino a 1000 GPa. La struttura del nuovo composto è mostrata in figura 3.

fig-3-struttura-di-na2he

Questa scoperta dimostra che l’elio non è completamente inerte come si pensava”, ha commentato Carlo Gatti (Istituto di Scienze e Tecnologie Molecolari del CNR, Milano), che ha contribuito allo studio come esperto di legami chimici, “In certe condizioni può formare dei composti e addirittura assumere una carica negativa. Di fatto, quello che capita è la creazione di coppie elettroniche che occupano alternativamente le posizioni dell’elio”.

fig-4-carlo-gatti

Carlo Gatti

Na2He appartiene infatti alla categoria dei cosiddetti elettruri – materiali cristallini simili a sali – in cui gli elettroni prendono il posto degli ioni negativi alternandosi a un reticolo di ioni carichi positivamente, rappresentati in questo caso dal sodio.

I ricercatori hanno anche teorizzato che il composto Na2HeO, che non hanno ancora sintetizzato, dovrebbe essere stabile a pressioni superiori a 15 GPa.

Questo studio mette in evidenza come l’alta pressione può essere utilizzata per la sintesi di composti con nuove stechiometrie e strutture elettroniche“, dice Eva Zurek, specialista in chimica computazionale presso la State University of New York, SUNY a Buffalo. Na2He non potrebbe mai essere stabile in condizioni atmosferiche, osserva Zurek, ma è stato ottenuto a circa il 40% della pressione presente al centro della Terra. I risultati amplieranno la comprensione dei processi chimici che possono verificarsi a grandi pressioni all’interno giganti gassosi come Giove e Saturno.

Il chimico inorganico Sven Lidin dell’Università di Lund (Svezia), osserva che le implicazioni per l’astronomia sono chiaramente interessanti “ma per quanto riguarda la nostra percezione della reattività chimica, questo risultato è un cambio di prospettiva.

Dice infatti Lidin: già le scoperte precedenti di altri composti dei gas nobili avevano messo in chiaro che l’inerzia è una questione di condizioni di reazione. Ma l’elio è stato un resistente anche in condizioni estreme, perché si tiene i suoi elettroni chiusi quasi ermeticamente e non li lascia andare. Questi nuovi risultati, aggiunge, mostrano che in un certo senso, “l’ultimo bastione sulla inerzia chimica è finalmente caduto.

Fonte: c&en newsletter web february 9, 2017

Il simbolo R ha sempre indicato un sostituente alchilico?

In evidenza

Rinaldo Cervellati.

In un precedente post si è detto che l’introduzione dei termini gruppo funzionale e serie omologhe è dovuta al lavoro pionieristico del chimico francese Charles Frédéric Gerhardt (1816-1856), che nel suo importante trattato Précis de Chimie Organique (1844) utilizzò questi concetti per sistematizzare e classificare tutti i composti organici noti all’epoca. Secondo lo storico della chimica W.B. Jensen, in quel trattato Gerhardt utilizzò per primo il simbolo R per scrivere le formule generali delle diverse classi di composti. Tuttavia, dice Jensen, il motivo della scelta della lettera R non è ancora chiaro. La spiegazione più ovvia è che fosse l’abbreviazione per la parola “radicale”, un termine introdotto da un altro chimico francese, Guyton de Morveau[1], nel 1786 per designare l’elemento o la combinazione di elementi che formavano acidi reagendo con l’ossigeno [1].

fig-1-louis-bernard_guyton_de_morveau

Guyton de Morveau

Però, fin dagli inizi del 19° secolo, il termine era usato per indicare qualsiasi specie monoatomica reattiva (“radicali semplici”) o poliatomica (“radicali composti”), frammenti di una molecola più grande che mantengono la propria identità in una serie di reazioni chimiche [2].

Un secondo possibile significato per la R di Gerhardt è il termine “residuo” (résidue) e il suo equivalente tedesco Rest. Questi termini erano stati introdotti da Gerhardt nel 1839 come parte della sua teoria dei residui per le reazioni organiche. Questa teoria postulava che le reazioni organiche fossero “guidate” dalla eliminazione di piccole molecole inorganiche stabili, come H2O, HCl, NH3, ecc., i composti organici essendo solo il risultato della combinazione casuale di frammenti organici o, appunto, residui rimasti nelle molecole di partenza dopo l’estrazione dei componenti necessari per il prodotto inorganico eliminato [3].

Entrambe le interpretazioni non sono però coerenti con l’uso che fa Gerhardt della lettera R nel suo Précis, infatti egli la usò sia per simboleggiare le molecole degli idrocarburi sia porzioni di esse o, come egli si espresse, per rappresentare “gli elementi combustibili” (les éléments combustibles). Egli limitò successivamente il suo utilizzo alle formule generali di idrocarburi e frammenti di idrocarburi contenenti il rapporto 2/1 fra idrogeno e carbonio (cioè CnH2n), impiegando simboli più elaborati per indicare altri rapporti, come R+2 per CnH2n+2 e R−4 per CnH2n-4, ecc.

Un altro chimico francese, August Laurent[2] (amico di Gerhardt), nel suo Méthode de Chimie, del 1854, utilizzò R nel significato originale di Guyton de Morveau per generalizzare le formule di diversi ossidi binari (ad es. RO, RO2, R2O3, ecc.), come pure per simbolizzare il nucleo (noyau) idrocarburico di svariate molecole organiche [4].

fig-2-auguste_laurent

Auguste Laurent

Fra Guyton-Morveau e Gerhardt, il grande J.J. Berzelius utilizzò nel 1819 la lettera R nel suo nuovo simbolismo chimico alfabetico come abbreviazione per qualsiasi “radicale combustibile” [5]. Berzelius usò questa abbreviazione nei suoi successivi lavori anche per le formule generalizzate degli ossidi, ad es. R + O, R + 2O, R + 3O, ecc, in cui R sta a significare un elemento o un radicale semplice.

Tutto questo, insieme alla definizione di R come rappresentante “les éléments combustibles”, suggerisce fortemente che Gerhardt stesse ancora usando il termine e il simbolo nel significato suggerito da Guyton e Berzelius e non nel significato moderno di radicale alchilico. Sarebbe difficile infatti credere che Gerhardt non fosse al corrente dei lavori di Berzelius quando scrisse il Précis, il chimico svedese era infatti considerato dai contemporanei la massima autorità in chimica.

Il famoso “Sunto” di Cannizzaro del 1858 [6] sulla determinazione dei pesi atomici contiene secondo Jensen la prima esplicita identificazione della lettera R con il termine radicale. A conferma di ciò Jensen cita la frase:

I indicate by the symbol RIm any monoatomic metallic radical, whether simple or compound, and with the symbol RIIm any biatomic metallic radical.

contenuta in una traduzione inglese del “Sunto” [7].

fig-3-stanislao-cannizzaro

Stanislao Cannizzaro

Ho trovato il riscontro nell’originale italiano a p. 354:

Indico col simbolo RIm qualsiasi radicale metallico monoatomico sia semplice sia composto; e col simbolo RIIm qualsiasi radicale metallico biatomico. Se nella stessa formula o nella medesima equazione voglio in generale indicare 2 o più radicali monoatomici, l’uno diverso dall’altro, aggiungerò ai simboli le lettere minuscole abc, perciò Rma’Rmb’ indicherà una unica molecola formata da 2 radicali diversi…

E prosegue a p. 355:

Le molecole dei radicali metallici monoatomici son rappresentate dalla formula (RIm)2; quelle dei radicali biatomici collo stesso simbolo del radicale esistente nei composti, poiché è carattere di questi radicali aver la molecola fatta da un sol atomo o da un sol gruppo che ne fa le veci.

Ritengo necessaria l’aggiunta di queste citazioni per far meglio comprendere l’importanza della chiara distinzione fra atomo e molecola fatta da Cannizzaro. Come noto il Sunto di Cannizzaro fu distribuito al Congresso di Karlsruhe del 1860 che terminò con la proposta di adottare concetti diversi per molecola e atomo e passare al nuovo sistema di pesi atomici e molecolari (J.I. Solov’ev L’evoluzione del pensiero chimico, EST, Mondadori, 1976, pp. 177-178).

Di regola, ai suoi radicali semplici corrispondevano atomi o elementi elettropositivi e i suoi radicali composti a gruppi atomici compresi frammenti idrocarburici. Cannizzaro ha anche introdotto il simbolo X:

X indica tutto ciò che vi è nella molecola, oltre l’idrogeno metallico; così, a cagion d’esempio, nel caso dell’acido acetico X = C2H3O2, essendo questi i componenti che insieme ad H fanno l’acido acetico[3].

In generale X rappresenta quindi sostituenti elettronegativi, come O, OH, e gli alogenuri.

Personalmente reputo Cannizzaro il più grande chimico del 19° secolo.

È curiosa la forma con cui Cannizzaro decide di pubblicare i risultati del suo lavoro, sottoforma di lunga lettera all’amico Sebastiano De Luca (conosciuto nel biennio 1845-47 a Pisa sotto la guida del chimico prof. Raffaele Piria) in cui espone un ampio riassunto delle lezioni di chimica svolte all’Università di Genova dove era stato chiamato a ricoprire la cattedra di chimica. Secondo alcuni biografi l’opera nasce sostanzialmente dall’esigenza didattica di chiarire a se stesso e ai propri studenti concetti e principi sui quali fino ad allora regnava la più assoluta confusione. Pare abbia affermato: «Io non ebbi veramente l’ambizione di proporre una riforma, non ebbi altro scopo che quello pedagogico». Ma è proprio la consapevolezza della validità didattica della sua teoria a spingerlo a comunicarne i risultati al mondo scientifico. Secondo altri, il suo maestro Piria lo rimproverava proprio per la grande attenzione con la quale Cannizzaro svolgeva l’attività didattica, a scapito della ricerca e gli rivolgeva non poche pressioni al riguardo. Quella di presentare i risultati della ricerca come lezioni potrebbe quindi essere stata anche una forma di ironia nei confronti di Piria. Nel Sunto è compresa un’analisi storica dettagliata del periodo in cui nacque e si sviluppò la teoria atomico-molecolare.

Seguendo Cannizzaro, Mendeleev ha fatto ampio uso del simbolo R per rappresentare le formule generali di ossidi (R2O, RO, R2O3, ecc.) e idruri (RH, RH2, RH3, ecc.) – corrispondenti alla valenza massima degli elementi nei gruppi della sua tavola periodica. Formule che comparirono nella parte superiore della forma breve della tavola periodica per più di 70 anni [8].

fig-4-periodensystem_mendelejew

forma corta della Tavola Periodica

Al contrario, nei primi testi e trattati di chimica organica non si fece uso della lettera R, che comparve saltuariamente nel testo di Erlenmeyer del 1867 [9], dopo di che il suo utilizzo nella letteratura organica aumentò lentamente durante il resto del 19° divenendo comune in tutto il 20° secolo.

*Questo post è sostanzialmente una traduzione ragionata e ampliata dell’articolo di W.B. Jensen: Why is R Used to Symbolize Hydrocarbon Substituents?, J. Chem. Educ., 2010, 87, 360-361.

[1] G. de Morveau, Ed., Encyclopédie méthodique (chymie), Vol. 1, Panckoucke: Paris, 1786, p. 142.

[2] J. B. Dumas, J. Liebig, “Note sur l´état actuel de la chimie organique,” Comptes rendus 1837, 5, 567-572.

[3] C. Gerhardt, “Sur la constitution des sels organique à acides complexes et sur leurs rapports avec des sels ammoniacaux,” Ann. chim. phys. 1839, 72, 181-214.

[4] A. Laurent, Méthode de chimie, Mallet-Bachelier: Paris, 1854, pp. 177-189, 425-4252

[5] J.J. Berzelius, 1819, nuova prefazione aggiunta alla traduzione francese del suo lavoro Essay on the Theory of Chemical Proportions and on the Chemical Influences of Electricity.

[6] S. Cannizzaro, “Sunto di un corso di filosofia chimica,” Il Nuovo Cimento 1858, 7, 321-366.

[7] traduzione inglese del Sunto: Sketch of a Course of Chemical Philosophy, Alembic Club Reprint No. 18, Livingstone: Edinburgh, 1949. Citazione a p. 41 della traduzione.

[8] D. Mendeleev, “Die periodischen Gesetzmässigkeit der chemischen Elemente,” Ann. Chem. Pharm. 1872, 8 (Suppl.), 133-229. Traduzione inglese disponibile in: W. B. Jensen, Ed., Mendeleev on the Periodic Law: Selected Writings, 1869-1905, Dover: Mineola, NY, 2005, pp. 38-109.

[9] E. Erlenmeyer, Lehrbuch der organischen Chemie, Winter: Leipzig, 1867, pp. 186, 210.

[1]Louis-Bernard Guyton, Baron de Morveau (Louis-Bernard Guyton-Morveau dopo la Rivoluzione Francese, (1737 – 1816) chimico e politico francese, noto in particolare per aver contribuito al nuovo sistema di nomenclatura chimica, insieme a Lavoisier e altri.

[2] Auguste Laurent (1807-1856) chimico francese, scoprì l’antracene, l’acido ftalico e identificò il fenolo. Introdusse un nuovo metodo di nomenclatura organica basato sui gruppi funzionali.

[3] Ai tempi di Cannizzaro era uso indicare il numero di atomi nelle molecole con apici anziché con pedici.

 

Datazione dei manufatti di cemento.

In evidenza

Luigi Campanella, ex Presidente SCI.

Alcuni anni fa una legge stabilì che potevano essere salvaguardate costruzioni costruite senza il rispetto delle distanze dalle rive del mare purchè costruite più di 20 anni prima. Si scatenò una vera bagarre sulla datazione di molte costruzioni per farle datare anteriormente ai 20 anni richiesti.

La datazione del cemento era e resta un’operazione assai delicata a cui la chimica dà un sostanziale contributo. Inoltre il poter caratterizzare un materiale cementizio invecchiato rende possibile una migliore valutazione nella determinazione di eventuali interventi di consolidamento (nel campo dell’edilizia civile) o di restauro (nel campo dei beni culturali), oltre – come si è detto- la sua datazione anche al fine di contribuire a dipanare dispute legali riguardanti la collocazione temporale di costruzioni edili.

Allo scopo di individuare dei possibili indicatori analitici per la diagnosi dell’invecchiamento di manufatti cementizi la prima operazione da fare è esaminare alcuni campioni provenienti da manufatti cementizi appena lavorati (fresco, circa 1 mese) e invecchiati naturalmente (non inferiore a 10 anni) o artificialmente mediante esposizione combinata a luce e calore e procedere con una diagnosi circa le alterazioni con tecniche rapide, che non richiedono pretrattamenti, quali l’analisi termica simultanea (analisi termogravimetrica (TGA) e differenziale (DTA), la diffrattometria a raggi x (XRD).

A cosa sono dovute le alterazioni suddette?

Rispondere a questa domanda è già gettare una base per la datazione. Individuare modifiche del manufatto, che sono riferibili al suo invecchiamento, risulta utile nella diagnosi dell’età del materiale

Diversi processi chimico-fisici avvengono tra le prime fasi della lavorazione del cemento, in cui si procede all’impasto con acqua, e le successive fasi dell’indurimento. Dopo 28 giorni si ha una maggiore definizione della composizione e della struttura; è infatti dopo tale periodo che sono previste le prove meccaniche per rispondere ai requisiti di legge riguardanti le opere di edilizia civile. In pratica, però, alcuni processi avvengono con cinetiche talmente lente e in dipendenza dell’ambiente circostante, che alcune modifiche del manufatto si manifestano solo dopo diversi anni dalla sua preparazione.

9780820602127-3La composizione chimica del cemento, anche se variabile e dipendente dalla zona di provenienza, essenzialmente è determinata dai seguenti componenti.

  • Il clinker che rappresenta il costituente principale. dal punto di vista mineralogico, esso può essere considerato come una roccia artificiale, sostanzialmente a base di silicati ed alluminati insieme ad una fase vetrosa a base di ossidi, la cui formazione è basata sulle reazioni in fase solida e sulla fusione di parte dei suoi costituenti, con la formazione di un magma eutettico in seno al quale si completa la formazione dei composti cristallini non fusibili.
  • Il gesso è molto diffuso in natura in giacimenti di origine sedimentaria, talvolta ricoperti da depositi di cloruro di sodio o di argille e marne. Esso è costituito essenzialmente da solfato di calcio biidrato CaSO4 2H2O, ma di rado è allo stato puro e presenta spesso impurezze quali silice, allumina, ossido di ferro, ossido di manganese, carbonati di calcio e di magnesio, minerali argillosi.

Secondo la normativa UNI EN 197-1-2001 il solfato di calcio può essere aggiunto al clincker durante la macinazione sia sotto forma di gesso (solfato di calcio biidrato CaSO4·2H2O), di gesso semiidrato (CaSO4·1/2H2O), o come anidrite (solfato di calcio anidro CaSO4) o come miscela di questi.

  • La Pozzolana e le ceneri volanti

La Pozzolana è una roccia di origine vulcanica presente in varie località del Lazio, della Sicilia e della Campania (p.e. Pozzuoli). E’ costituita da ossidi,in prevalenza di silicio,ma anche di alluminio,fero,calcio ed altri metalli. Essa è costituita da lapilli e ceneri vulcaniche cementatesi per azione degli agenti atmosferici i quali, agendo sui componenti delle lave a base di silicio, hanno dato origine ad un prodotto di natura acida che contiene silice (SiO2) in forma reattiva, capace cioè di reagire a temperatura ambiente con l’idrossido di calcio formando dei composti insolubili. La pozzolana macinata insieme al gesso e al clinker è usata per produrre cementi pozzolanici.

triangle_imagelargeQuando si impasta il cemento con l’acqua, la massa in breve comincia a indurire (fa presa); col procedere del tempo l’indurimento prosegue (può durare anche molti anni) e se la malta è mantenuta sott’acqua può assumere consistenza lapidea. Diverse teorie sono state proposte per spiegare le reazioni che accompagnano presa e indurimento; di esse, una ne attribuisce la causa alla formazione dei composti cristallini che si originano dalla reazione dei componenti dei clinker con l’acqua, l’altra invece sostiene che si formino sostanze di natura colloidale.

cemento2

Illustrazione schematica dei pori nel silicato di calcio in diversi stadi di idratazione http://matse1.matse.illinois.edu/concrete/prin.html

Oggi si è giunti in parte ad una fusione di queste due teorie e la presa e l’indurimento delle malte cementizie vengono attribuiti all’idrolisi e all’idratazione degli alluminati e dei silicati di calcio presenti nel clinker con messa in libertà di idrato di calcio e alla formazione anche di ferriti di calcio idrati. Dei suddetti composti idrati solo l’idrato di calcio può dare cristalli sufficientemente grandi da essere visibili al microscopio, gli altri formano cristalli di dimensioni all’incirca uguali a quelle delle particelle colloidali. Il processo di presa del cemento prosegue con quello di invecchiamento durante il quale alcune delle reazioni descritte proseguono ed altre se ne instaurano, sostanzialmente reazioni della matrice con l’acqua che favoriscono una maggiore idratazione del materiale riferibile sia all’acqua di costituzione, che di adsorbimento. Inoltre l’ambiente di esposizione soprattutto nelle atmosfere urbane può facilitare l’innescarsi di reazioni che modificano la matrice.

I processi di invecchiamento del materiale cementizio, portano a modifiche composizionali e strutturali della matrice che possono essere messe in evidenza all’analisi diffrattometrica e termogravimetrica, in quanto capaci di discriminare fra cementi “giovani” e cementi “vecchi” sulla base di differenze riguardanti il loro stato di idratazione, ossidrilazione, carbonatazione e cristallizzazione.

In sintesi la ricerca di indici capaci di agire da marker dell’invecchiamento del cemento è avvenuta a partire da un confronto fra cementi preparati di fresco e cementi invecchiati naturalmente od artificialmente. Al fine di evidenziare le possibili differenze si è ricorsi all’uso di tecniche diffrattomentriche e di metodi termici.

Si è pervenuti alla conclusione che all’aumentare del tempo di invecchiamento aumenta la quantità d’acqua rilasciata al riscaldamento (dal 2-3% all’8-10%), diminuisce il rilascio di anidride carbonica (dal 35-40% al 6-10%) alla temperatura di decomposizione del carbonato e diminuisce il peso del residuo del processo di calcinazione (dal 40-42% al 16-20%). Tali differenze sono da attribuire a una degradazione subita durante l’invecchiamento dei composti che caratterizzano la formazione del cemento. A riprova di ciò a tali variazioni corrispondono ben individuate variazioni degli spettri di polvere ai raggi X.

 

Sapori e aromi dei pomodori

In evidenza

 Rinaldo Cervellati.

Negli ultimi decenni i pomodori sono diventati il prodotto fresco preferito negli USA, e sono in cima al settore frutta e verdura, con una quota di mercato di quasi il 10%. In seguito al forte aumento della domanda, i produttori hanno cercato di rendere i pomodori sempre più attraenti all’aspetto, incrementandone il colore rosso e il tempo di conservazione, senza tuttavia considerare l’impatto che queste modifiche avrebbero potuto avere sul gusto e sul profumo del prodotto, come sostiene il Dott. James Giovannoni, biologo molecolare presso l’USDA (United States Department of Agriculture).

fig-1-varieta-di-pomodoriIl Dott. Giovannoni afferma che la maggior parte dei pomodori che arrivano ai supermercati ha subito una mutazione genetica che provoca un ritardo nella produzione degli ormoni di maturazione, con conseguente incremento della durata di conservazione. Un danno collaterale di tale mutazione, tuttavia, è la diminuzione della produzione di zucchero, con conseguente alterazione del sapore del prodotto. Al tempo stesso, quando i produttori hanno selezionato frutti di colore rosso uniforme, essi non si sono resi conto che le zone verdi della buccia, oltre a essere una “eredità” di specie selvatiche, sono ricche di cloroplasti, organuli essenziali per la produzione di sostanze aromatiche.

Di conseguenza, molti consumatori americani che hanno avuto familiarità con il delizioso sapore e la consistenza di un pomodoro appena raccolto, si sentono traditi da queste “sfere rosse” poco saporite e quasi prive di odori vendute in molti supermercati.

Ma il ripristino dell’aroma e del sapore del pomodoro potrebbe avvenire nei supermercati USA grazie ai risultati di una dettagliata ricerca genetica effettuata da un team internazionale di 20 ricercatori (a prevalenza americani e cinesi, qualche europeo)[1] guidati dai Dott. Harry J. Klee, professore di Scienze Orticole all’Università della Florida e Sanwen Huang dell’Accademia Cinese di Scienze Agrarie di Pechino.

fig-2-harry-klee-and-sanwen-huang

harry-klee-e-sanwen-huang

Il gruppo di ricerca ha sequenziato il genoma di 398 varietà di pomodoro fra selvatiche, antiche e moderne. Aiutati anche da un panel di assaggiatori qualificati, i ricercatori hanno identificato 28 composti caratterizzanti gli aromi e i sapori più gradevoli dei pomodori, fra essi il frondoso geranilacetone, il floreale β-ionone e l’agrumato 6-metil-5-epten-2-one. La ricerca ha evidenziato che la maggior parte delle varietà moderne da supermercato presentano livelli molto più bassi di 13 fra queste molecole aromatiche rispetto alle varietà antiche [1].

fig-3-composti-isolatiPer individuare quali regioni del genoma di pomodoro sono responsabili della biosintesi di queste sostanze, il team ha preso in considerazione quelle varietà di pomodoro che le contengono a livelli elevati. Klee afferma che il lavoro ha fornito una mappa chimica e genetica in grado di dare indicazioni per migliorare il sapore degli attuali pomodori dei supermercati americani. Dice infatti a c&en: “Uno degli scopi della ricerca è stato quello di poter dire ai produttori: ecco cosa manca, ecco perché, e qui ci sono i marcatori molecolari che si possono utilizzare per recuperare i tratti perduti. Stiamo cercando di riportare il calendario indietro di decenni recuperando le caratteristiche che erano presenti nei pomodori nella prima metà del 20° secolo“.

Infine, il Dott. Giovannoni commenta: “Non so se è possibile produrre un pomodoro da supermercato con le stesse caratteristiche di quello coltivato nel proprio giardino, ma non ho dubbi che questo lavoro possa aiutare i produttori a immettere sul mercato pomodori migliori di quanto sono adesso.

Anche in questo caso che riguarda una questione assai controversa, cioè gli organismi geneticamente modificati, si propone un aspro contrasto fra ogiemmefobici e ogiemmefilici. Se cerchiamo di guardare spassionatamente allo specifico del problema penso che a nessun mediterraneo verrebbe in mente di produrre pomodori geneticamente modificati. I nostri pomodori con le loro innumerevoli varietà non ne hanno certamente alcuna necessità commerciale, ci saranno però delle regole comunitarie come per le quote latte. Confesso che non ne ho idea. Almeno però so che mentre la legislazione sugli OGM è abbastanza restrittiva in Italia e in Europa, è però molto permissiva negli USA (e in Asia ?). Il fenomeno pomodori ne è un esempio.

Senza regole, soprattutto senza ricerca il rischio è quello di produrre vegetali che, se va fatta bene “san solo di carton” (come direbbe Crozza). Ma potrebbe anche andar peggio…

Fonte: c&en newsletter, web: Jan 26, 2017

 [1] D. Tieman et al., A chemical genetic roadmap to improved tomato flavor, Science, 2017, 355, 391 –394. DOI: 10.1126/science.aal1556

[1] La ricerca ha ricevuto notevoli finanziamenti, oltre che dalla NSF (National Science Foundation) e da varie Istituzioni Cinesi, anche dall’European Research Council e dall’European Commission Horizon 2020 program.