Alcune considerazioni sulla Strategia Energetica Nazionale 2017

In evidenza

Alcune considerazioni del Gruppo di Scienziati di Bologna

energiaperlitalia.it (Coordinatore: Vincenzo Balzani)

sulla  Strategia Energetica Nazionale 2017

 

La bozza della Strategia Energetica Nazionale (SEN) presentata dal Governo il 10 maggio si propone tre obiettivi:

  1. Competitività (ridurre il gap di prezzo dell’energia rispetto ai prezzi UE);
  2. Ambiente (raggiungere obiettivi in linea con COP21);
  3. Sicurezza (flessibilità di approvvigionamento).

Esame della SEN

Dopo un’attenta lettura della bozza SEN, si possono fare le seguenti considerazioni.

Coordinamento. Considerata la stretta connessione fra la scelta delle fonti energetiche e le conseguenze che ne possono derivare su clima e ambiente, risulta difficile capire le motivazioni per cui il Ministero delle Sviluppo Economico prepari una Strategia Energetica Nazionale e, allo stesso tempo, il Ministero dell’Ambiente prepari una Strategia energia-clima. In altri paesi si procede solitamente alla preparazione di un unico programma che, oltre a rispettare gli accordi di Parigi e gli obiettivi UE, tiene conto delle caratteristiche e delle esigenze specifiche del paese.

Fonti rinnovabili. L’obiettivo della SEN è in linea con quelli europei (27% di rinnovabili nei consumi finali al 2030; ad oggi la stima è del 17,5%). C’è però chi pensa che sia necessario giungere al 35% di energia rinnovabile per rispettare lʼaccordo di Parigi. LʼItalia, in ogni caso, deve e può fare di più. Alla fine del 2015 avevamo circa 19 mila MW di fotovoltaico installato e circa 9 mila MW di eolico. Il nostro paese ha conosciuto un forte sviluppo delle fonti rinnovabili fino al 2013, ma da più di tre anni è in stasi con la conseguente perdita di migliaia di posti di lavoro.

Più in dettaglio, non si può che essere d’accordo con l’obiettivo della SEN di promuovere l’autoconsumo per i possessori di piccoli impianti, soluzione finora fortemente scoraggiata dalla burocrazia e persino impedita da alcune norme. Parallelamente sarà però necessario facilitare la diffusione di metodi di accumulo. Positiva anche la decisione di promuovere la costruzione di grandi impianti fotovoltaici. A questo proposito, non si capisce perché Enel sia così attiva nel costruire grandi impianti di energie rinnovabili all’estero e del tutto assente, in questo campo, in Italia. Forse perché disturberebbe altri importanti operatori del settore energetico?

Efficienza energetica. La SEN riconosce che è necessaria una riqualificazione energetica su larga scala del nostro patrimonio edilizio, agendo su palazzi, agglomerati di edifici e interi quartieri con metodologie simili a quelle adottate con successo in altri paesi ed intervenendo, contemporaneamente, sulle criticità sismiche. Perché il programma abbia successo, è però necessario un piano adeguato di incentivi per anticipare le risorse necessarie.

Uscita dal carbone. Nella SEN è prevista tra il 2025 e il 2030. Nel caso in cui ciò si verificasse nel 2025, secondo la SEN si dovrebbero pagare circa 3 miliardi di euro di compensazione ai proprietari delle centrali non ancora ammortizzate. A questo proposito ci si chiede: 1) Possibile che impianti così vecchi non saranno ancora del tutto ammortizzati nel 2025? 2) E’ stato calcolato il risparmio dovuto ai benefici sanitari e climatici che deriverebbero dall’uscita anticipata, considerato che lʼAgenzia Europea per lʼAmbiente ha stimato in oltre 500 milioni di euro lʼanno gli impatti della sola centrale di Brindisi? 3) E’ stato calcolato il risparmio generato dalla mancata importazione del carbone?

In ogni caso, il problema delle compensazioni per impianti non adeguatamente sfruttati deve insegnarci che le grandi opere nel settore energetico vanno valutate in base all’effettivo bisogno che ci sarà in futuro (vide infra).

Investimenti per il gas. La SEN prevede di investire sul gas per ottenere elettricità in sostituzione del carbone, come risorsa di back up delle fonti rinnovabili e per diversificare le fonti di approvvigionamento. A questo proposito bisogna anzitutto notare che il consumo di gas, che era di circa 85 Gm3 all’anno nel periodo 2005-2008, è diminuito negli ultimi anni (71 Gm3 nel 2016) e certamente continuerà a diminuire. C’è quindi il rischio di costruire infrastrutture che rimarranno inutilizzate o sotto utilizzate, come è accaduto per i rigassificatori, con spreco di denaro pubblico o con la necessità di successive compensazioni per il mancato uso. Poiché in futuro per vari motivi si produrrà e si userà sempre più energia elettrica, sarebbe meglio investire in sistemi di accumulo dell’elettricità piuttosto che in centrali a gas di back up o in impianti di stoccaggio geologico del gas di importazione.

Trasporti. La SEN propone di estendere l’uso del gas come combustibile. Questo è anche quanto sostiene Eni nelle numerose pagine pubblicitarie sulla stampa e nei frequenti spot TV: il metano come ponte verso l’uso (remoto) delle fonti rinnovabili. Bisogna notare, però, che l’utilizzo del metano abbatte solo in parte l’inquinamento atmosferico e non porta alcun vantaggio per quanto riguarda il cambiamento climatico. E’ vero, infatti, che a parità di energia prodotta la quantità di CO2 generata dal gas naturale è inferiore di almeno il 20% di quella generata quando si usano derivati del petrolio, ma è anche vero che il metano è un gas serra 72 volte più potente di CO2 quando l’effetto è misurato su 20 anni e 25 volte più potente quando misurato su 100 anni. Poiché nella lunga filiera del metano si stima ci siano perdite di almeno il 3% rispetto alla quantità di gas usato, è chiaro che passando al metano non si combatte affatto il cambiamento climatico.

Sempre nel campo dei trasporti, la SEN fa molto affidamento sui biocombustibili. Nulla da obiettare sul biometano ottenuto da prodotti di scarto, ma la figura riportata a p. 17 della SEN prevede che dal 2021 al 2030 si avrà solo un piccolo aumento della penetrazione delle rinnovabili nei trasporti e questo sarà principalmente dovuto a biocombustibili. Ancora una volta, questo è quanto sostiene Eni nelle sue pagine pubblicitarie, in una delle quali è scritto a caratteri cubitali che “Il carburante si otterrà dalle bucce delle mele. In Italia” (Corriere della Sera, 13 maggio 2017)

Va sottolineato che la presa di posizione di SEN e Eni in favore dei biocombustibili è in netta contraddizione con la realtà dei fatti. Numerosi studi scientifici dimostrano che nella filiera che porta dalle biomasse alle auto alimentate da biocombusibili l’efficienza di conversione dei fotoni del sole in energia meccanica delle ruote di un’automobile (sun-to-wheels efficiency) è inferiore allo 0.1%, mentre per la filiera che dal fotovoltaico porta alle auto elettriche l’efficienza è 5,4%, cioè almeno cinquanta volte maggiore. In effetti, quello che gli esperti prevedono non è una sostituzione significativa dei combustibili fossili con biocombustibili, ma una rapida, dirompente diffusione delle auto elettriche. La cosa non meraviglia perché i motori elettrici non inquinano, non producono CO2, sono quattro volte più efficienti dei motori a combustione interna e sono molto più facili da riparare e da mantenere.

Mentre l’Unione Petrolifera stima che nel 2030 i veicoli elettrici saranno solo lo 0,5% del parco di autoveicoli, gli esperti sono concordi nel prevedere una vera e propria rivoluzione nel campo dei trasporti. Nel 2020 potremo scegliere fra 120 modelli diversi di auto elettriche, nel 2025 il 30% delle auto vendute saranno elettriche e nel 2030 il 60% dei veicoli circolanti saranno elettrici. Anche Cina e India, i due mercati su cui hanno a lungo puntato le compagnie petrolifere e i costruttori di vetture con motori a combustione interna, hanno recentemente deciso di sviluppare rapidamente la mobilità elettrica.

In Italia, quindi, non servono altre bioraffinerie alimentate da olio di palma proveniente dalla Malesia (in attesa di usare le bucce delle nostre mele), ma fabbriche di pannelli fotovoltaici, di batterie e di auto elettriche.

Il futuro

E’ ormai chiaro che il fotovoltaico sarà la fonte energetica in più rapida crescita nei prossimi anni. Secondo Irena, tra il 2015 e il 2025 il costo di installazione degli impianti fotovoltaici si ridurrà del 57%. Nel frattempo, l’efficienza dei moduli più comuni aumenta (18-20%) e la diminuzione di efficienza nel tempo è così piccola da permettere un utilizzo medio di 35 anni. Il fotovoltaico è una tecnologia dirompente che, con effetto sinergico, potenzia due altre tecnologie: batterie (anche per uso stanziale) e auto elettriche. Il fotovoltaico servirà anche a produrre combustibili solari, indispensabili per i trasporti aerei e marittimi: utilizzando energia fotovoltaica per compiere l’elettrolisi dell’acqua si ottiene, infatti, idrogeno che può essere utilizzato per produrre combustibili liquidi come metanolo e gasolio sintetico.

E’ necessaria la riconversione di molte industrie. Un proverbio cinese dice: “Quando soffia il vento del cambiamento alcuni costruiscono muri, altri pale eoliche”. Saipem e Enel l’hanno capito. E’ urgente che la riconversione di Eni verso le rinnovabili diventi reale, non solo di facciata. Quella che era la “nostra” grande industria automobilistica (FCA) non è interessata ai veicoli elettrici e si ostina a produrre automobili tradizionali che entro non molti anni saranno fuori mercato. Questa incapacità di capire in che direzione va il mercato automobilistico rischia di lasciarci fuori dallo sviluppo industriale di questo settore e lo consegna ancor più nelle mani di industrie straniere. Sia le industrie petrolifere che quelle automobilistiche dovrebbero tener conto che c’è una rapida evoluzione nella tecnologia e che non si possono vincere sfide andando contro corrente. Purtroppo la SEN non è in linea con le previsioni degli esperti e non si pone obiettivi chiari nel campo dei trasporti. Se veramente si vuole svecchiare il parco veicolare (p. 16 della bozza SEN) per ridurre l’inquinamento e combattere i cambiamenti climatici, bisogna investire nella realizzazione di una infrastruttura diffusa di ricarica elettrica e fornire incentivi per lʼacquisto di veicoli elettrici e non di veicoli a combustione interna, particolarmente dopo gli inganni che hanno perpetrato in questo campo le industrie automobilistiche.

Per quanto riguarda il gas, la SEN dovrebbe tener presente che c’è il forte rischio di costruire gasdotti e impianti di rigassificazione e stoccaggio in eccesso. Come già accennato, i consumi di gas sono in diminuzione e continueranno a diminuire sia per combattere i cambiamenti climatici che per l’inarrestabile sviluppo delle rinnovabili. Secondo le previsioni UE, nel 2030 si importeranno 328 miliardi di m3 di gas all’anno, la metà della capacità di importazione delle infrastrutture già oggi disponibili. Con la realizzazione di tutte le infrastrutture programmate l’Europa avrebbe una capacità di importazione addirittura tre volte maggiore di quella necessaria. Un discorso simile si può fare per quanto riguarda le bioraffinerie, data la rapida diffusione di auto elettriche.

La netta presa di posizione dei governi italiano, francese e tedesco contro la decisione del presidente Trump di ritirarsi dall’accordo di Parigi deve ora declinarsi in azioni e fatti concreti. La transizione energetica dai combustibili fossili alle energie rinnovabili è non solo necessaria, ma inevitabile. Nella letteratura scientifica internazionale ci sono molti studi sull’argomento. Ricordiamo solo quello di scienziati delle università di Stanford, Berkeley e Berlino, nel quale è dimostrato che la transizione è tecnicamente possibile ed economicamente conveniente. In tutti i 139 paesi presi in esame, entro il 2050 si possono sostituire totalmente i combustibili fossili con l’energia rinnovabile del sole, del vento e del’acqua. Per quanto riguarda specificamente l’Italia, lo studio prevede che la transizione energetica porterà da qui al 2050 un risparmio di circa 6.700 dollari per persona all’anno e un aumento complessivo di circa 770.000 posti di lavoro, considerando anche i circa 150.000 posti persi con l’abbandono dei combustibili fossili.

Conclusioni

Definire le linee di indirizzo per una valida Strategia Energetica Nazionale è un problema complesso, che deve essere affrontato congiuntamente da almeno cinque prospettive diverse: scientifica, economica, sociale, ambientale e culturale.

A nostro parere gli obiettivi principali delle Strategia Energetica Nazionale per un paese come l’Italia dovrebbero essere due, come già avemmo modo di segnalare al precedente governo:

  1. Ridurre il consumo di energia, obiettivo che deve essere perseguito mediante un aumento dell’efficienza energetica e, ancor più, educando alla cultura della parsimonia, principio di fondamentale importanza per vivere in un mondo che ha risorse limitate.
  2. Facilitare e accelerare la transizione dall’uso dei combustibili fossili a quello delle energie rinnovabili, anche nell’ottica di una più generale transizione dall’economia lineare all’economia circolare.

Perseguendo questi due obiettivi, si potrebbero raggiungere importanti risultati:

riduzione delle importazioni di combustibili fossili;

– maggiore indipendenza energetica;

– miglioramento nella bilancia dei pagamenti;

– riduzione (non espansione!) fino a totale cessazione dell’estrazione di combustibili fossili nel nostro suolo e nei nostri mari, evitando così la degradazione del paesaggio e il rischio di incidenti che potrebbero compromettere il turismo, che è un’enorme fonte di ricchezza certa per l’economia nazionale;

– superamento dei modesti obiettivi dichiarati dal nostro paese alla COP21, con un conseguente maggiore abbattimento non solo di gas serra, ma anche delle sostanze inquinanti e quindi dei costi sociali ed economici da esse provocati; ricordiamo che secondo l’Agenzia Europea per l’Ambiente in Italia avvengono più di 90 mila morti premature ogni anno (in termini di anni di vita persi, circa 16 anni ogni 1000 abitanti).

– creazione di nuovi posti di lavoro particolarmente nel settore manifatturiero.

E’ importantissimo che la riduzione dei consumi non sia basata solo su un aumento di efficienza perché in tal caso può verificarsi l’effetto rebound: i soldi risparmiati con l’aumento di efficienza vengono spesi altrove, con ulteriori consumi energetici. Prima che sull’efficienza, è necessario che l’azione del governo sia volta a diffondere una cultura della sufficienza per far sì che le persone diventino consapevoli dei vantaggi di vivere in un modo sobrio, riducendo volontariamente i consumi di energia e di ogni altra risorsa. Il governo potrebbe dare il buon esempio riducendo il limite di velocità sulle autostrade, incoraggiando i cittadini ad acquistare auto che consumino e inquinino meno, incentivando l’uso delle biciclette e dei mezzi pubblici, trasferendo per quanto è possibile, con la massima urgenza, il trasporto merci dalla strada alla rotaia o a collegamenti marittimi e, soprattutto, organizzando una campagna di informazione e formazione culturale, a partire dalle scuole, per mettere in luce i vantaggi dello sviluppo delle fonti rinnovabili, della riduzione dei consumi individuali e collettivi e più in generale della sobrietà. Se il denaro speso dall’Eni per la sua intensa e irritante campagna pubblicitaria fosse usato dal governo per una campagna culturale su questi temi, si potrebbero gettare le fondamenta per una società a 2000 W come quella scelta dagli svizzeri col referendum del 21 maggio 2017, che ha approvato la strategia energetica svizzera 2050. (NOTA: attualmente, un cittadino americano usa 12.000 watt di potenza e un cittadino europeo 6.000 watt. 2000 watt era la potenza pro capite complessiva usata in Europa negli anni ’60 ed è proprio questo l’obiettivo che la Svizzera si è posta di raggiungere nel 2050: 2000 watt di potenza corrispondono infatti ad una quantità di energia sufficiente per soddisfare tutte le necessità dei cittadini e per permettere una vita più che agiata).

Bisogna rendersi conto che il mondo deve cambiare, perché, come dice papa Francesco nell’enciclica Laudato si’, “l’idea di una crescita infinita o illimitata, che ha tanto entusiasmato gli economisti, i teorici della finanza e della tecnologia suppone la menzogna circa la disponibilità infinita dei beni del pianeta, che conduce a “spremerlo” fino al limite e oltre il limite. Si tratta del falso presupposto che esiste una quantità illimitata di energia e di mezzi utilizzabili, che la loro immediata rigenerazione è possibile e che gli effetti negativi delle manipolazioni della natura possono essere facilmente assorbiti».

Compito della SEN è gettare le basi per il passaggio dal consumismo e dall’usa e getta dell’economia lineare ad una economia circolare caratterizzata dalla sobrietà. L’Italia, un paese che per decenni ha vissuto al di sopra delle proprie risorse economiche, caricando pesanti debiti sulle spalle delle future generazioni, può e deve trovare nella transizione energetica l’occasione per un netto cambiamento di rotta che le permetterebbe anche di assumere un ruolo di guida all’interno della Unione Europea.

4 giugno 2017

Gruppo di scienziati di Bologna energiaperlitalia.it

Vincenzo Balzani (coordinatore), Dipartimento di Chimica “G. Ciamician”, Università; Nicola Armaroli, Istituto ISOF-CNR; Alberto Bellini, Dipartimento di Ingegneria dell’Energia Elettrica e dell’Informazione “Guglielmo Marconi”, Università; Giacomo Bergamini, Dipartimento di Chimica “G. Ciamician”, Università; Enrico Bonatti, ISMAR-CNR; Alessandra Bonoli, Dipartimento di Ingegneria Civile, Chimica, dell’Ambiente e dei Materiali, Università; Carlo Cacciamani, Servizio IdroMeteoClima, ARPAE; Romano Camassi, INGV; Sergio Castellari, Divisione servizi climatici, CMCC e INGV; Daniela Cavalcoli, Dipartimento di Fisica ed Astronomia, Università; Marco Cervino, ISAC-CNR; Maria Cristina Facchini, ISAC-CNR; Sandro Fuzzi, ISAC-CNR; Luigi Guerra, Dipartimento di Scienze dell’Educazione «Giovanni Maria Bertin», Università; Giulio Marchesini Reggiani, Dipartimento di Scienze Mediche e Chirurgiche, Università; Vittorio Marletto, Servizio IdroMeteoClima, ARPAE; Enrico Sangiorgi, Dipartimento di Ingegneria dell’Energia Elettrica e dell’Informazione “Guglielmo Marconi”, Università; Leonardo Setti, Dipartimento di Chimica Industriale, Università; Micol Todesco, INGV; Margherita Venturi, Dipartimento di Chimica “G. Ciamician”, Università; Stefano Zamagni, Scuola di Economia, Management e Statistica, Università; Gabriele Zanini, UTVALAMB-ENEA

 

La pubblicità di ENI. Il metano ci dà una mano. O no?

In evidenza

Claudio Della Volpe

Con un fatturato annuo di oltre 67 miliardi di euro nel 2016, sia pure in fortissima diminuzione rispetto al passato (i dipendenti si sono ridotti a meno di 30.000 dagli oltre 100.000 degli anni 90) ENI rimane la seconda o terza azienda italiana (dopo EXOR-FCA, ossia l’ex Fiat e dopo ENEL, nel 2016), pagando la riduzione dei costi del greggio e il deconsolidamento di Saipem e Versalis; se enrambe fossero rimaste nel perimetro ENI, la società oggi avrebbe un fatturato di oltre 80 miliardi. Ma nonostante questo, la fama di “stato-nello-stato” guadagnata fin dai tempi di Mattei non viene scalfita, ed ENI continua a svolgere un ruolo chiave sia politico che materiale. Basti pensare al caso Shalabayeva e alle contestazioni contro ENI della Nigeria e di alcune ONG; a febbraio la Procura della Repubblica di Milano ha chiesto il rinvio a giudizio per l’amministratore delegato dell’Eni Claudio Descalzi e per altri 12 indagati, tra cui l’ex ad Paolo Scaroni e Luigi Bisignani, per un presunto caso di corruzione legato all’acquisizione dei diritti di sfruttamento del mega blocco petrolifero OPL245, in Nigeria: si parla di oltre un miliardo di euro.

OPL 245 è un immenso blocco estrattivo situato in Nigeria sfruttato da ENI e Shell; la Nigeria è uno degli stati da cui provengono oggi più immigrati nel nostro paese e che lamenta una maggiore ingerenza nella sua Natura e nella sua economia da parte dell’Italia; è da pensarci quando si parla di immigrazione. La comunità Ikebiri oggi, come quella Bodo ieri contro la Shell dimostrano che l’emigrazione nigeriana non nasce dal nulla. Il caso Ken Saro-Wiwa degli anni 90 (difensore del popolo Ogoni) dimostra anche che questi contrasti sono ben fondati, essendo iniziati con la scoperta stessa del petrolio nigeriano nel 1956.

Kenule Beeson Saro-Wiwa, uno dei maggiori intellettuali africani, impiccato nel 1995*

Ma questo post non vuole solo dare qualche informazione sulla politica internazionale di ENI, che per i chimici italiani rimane una azienda “di riferimento”, ma soprattutto svelare quanto ci sia di greenwashing, di falso ambientalismo in una politica energetica del nostro paese che è in grave ritardo.

Oggi ci occupiamo della parola d’ordine sul metano come alternativa fossile “verde” al petrolio e al carbone. E’ veramente così?

ENI ne è convinta perchè sulle pagine del Fatto pubblicizza la sua strategia con grande enfasi e cerca di sfatare quelli che chiama i miti sul gas; alcune cose sono vere, ma di quelle più importanti ENI non dice nulla, anzi nicchia (al mito 3 dice esplicitamente una bufala che oggi contesteremo). Andatevela a leggere anche se prima potete riflettere sul fatto che il giornale in questione ha avuto una ampia polemica con ENI a proposito della pubblicità proprio qualche mese fa in rapporto all’informazione, denunciando che a causa degli articoli sulla questione nigeriana Eni voleva tagliare la pubblicità; oggi ENI sta facendo pubblicità proprio sul Fatto e vedremo se il Fatto continuerà a fornire informazioni sulla questione nigeriana. Siamo “su con le rece” come si dice a Trento, su con le orecchie, vedremo.

Allora il metano è un gas combustibile; facciamo un confronto fra i tre principali combustibili, carbone, petrolio e gas metano e vediamo quanti gas serra producono nella loro combustione.

I dati a cui si riferisce anche ENI sono riportati qui; e sono anche facilmente calcolabili; facciamo un po’ di stechiometria, prendiamo una tabellina adeguata:

C+O2=CO2 + 32.5MJ/kg di C

CH2+1.5O2=CO2 +H2O+ 42MJ/kg di CH2

CH4+2O2=CO2 +2H2O+ 55.5MJ/kg di CH4

Carbone (antracite), composizione approssimata C, entalpia di combustione= 32.5MJ/kg, CO2 emessa per kg 44/12=3.67kg, CO2 emessa per MJ 0.114kg

Petrolio, composizione approssimata CH2, entalpia di combustione=42 MJ/kg, CO2 emessa per kg 44/14=3.14kg , CO2 emessa per MJ 0.074kg

Metano, composizione approssimata CH4, entalpia di combustione=55.5MJ/kg CO2 emessa per kg 44/16=2.75kg; CO2 emessa per MJ 0.049kg

Sorvolo sui dettagli delle composizioni, giusto per far capire i ragionamenti ai non addetti; dunque il rapporto per unità di energia prodotta ottenuto con questo semplice conto ci dice che il carbone produce più del doppio del diossido rispetto al metano e il petrolio circa il 50% in più (2:1.5:1).

I dati dell’EIA sono leggermente diversi e ovviamente più precisi, sono espressi in libbre di diossido per milione di BTU: (228.6:161.3:117 ossia 1.95:1.38:1) e perfino più sfavorevoli al metano, ma qui vale il senso generale più che il valore numerico.

Ma questo risultato è quello definitivo? La risposta è no. Perchè quando si usa un combustibile occorre indagare tutta la catena della estrazione, produzione, distribuzione. E qui le cose cambiano.

L’estrazione ha a che fare con l’EROEI del combustibile, ossia col suo costo energetico e da questo punto di vista il carbone con il suo bassissimo costo estrattivo batte sia il petrolio che il gas; d’altronde riperde poi posizioni nella parte trasporto, dove la bassa densità lo sfavorisce. Trasportare carbone è semplice ma costoso (occupa grandi volumi in rapporto all’energia offerta). Per questo il carbone è prevalentemente utilizzato in prossimità dei luoghi di produzione (in generale, in Italia abbiamo casi di carbone importato dall’altra parte dell’oceano).

Ma il dato più eclatante da considerare è che il metano è esso stesso un gas serra e anche molto più potente del diossido di carbonio. L’effetto serra del metano espresso come forzante termica nei confronti dell’atmosfera varia nel tempo poichè la sua vita media è relativamente breve, dell’ordine del decennio, dopo si trasforma essenzialmente ma non solo in diossido; ancora una volta facciamo una approssimazione ma consideriamo solo l’effetto principale.

Per stimare l’effetto serra di una sostanza si usa una scala che dipende dalla sostanza e dal tempo considerato, ossia dalla velocità con cui la sostanza una volta immessa in atmosfera viene poi riciclata; questa scala vale 1 per la CO2 qualunque sia t e viene chiamata GWPXX, dove XX indica il periodo di tempo considerato in anni; dunque se cerchiamo il GWP20 o il GWP100 per il metano troveremo due valori che sono 84-87 e 28-36 rispettivamente; il che significa che a parità di concentrazione dopo 20 anni o dopo 100 anni l’assorbimento serra comporterà una forzante rispettivamente 84-87 volte o 28-36 volte superiore a quella di una eguale quantità di CO2.

Questi valori sono i più recenti valori stimati dall’IPCC; il metano è un potente gas serra che fortunatamente è presente in concentrazione molto più bassa di altri in atmosfera anche se rapidamente crescente.

Ricordo che uno degli ambiti di studio di Guido Barone, mio tutor di tesi a Napoli (e che ci ha lasciati da poco) era proprio questo, capire il ruolo potenziale del metano disciolto in acqua di mare (che è una quantità stratosferica nel permafrost e in prossimità delle coste dei mari polari). Io stesso feci una tesi sulla capacità delle soluzioni acquose di solubilizzare piccole molecole di idrocarburo nelle cavità dell’acqua “strutturata”, anche se allora 40 anni fa lo scopo era diverso, era di comprendere meglio la struttura terziaria delle proteine.

Il metano, l’etano sono parecchio solubili in acqua, specie a bassa temperatura e ad una pressione di qualche atmosfera; la formazione di idrati contenenti questi gas nei grandi impianti di pompaggio del gas naturale è uno dei problemi di funzionamento principali e il loro potenziale rilascio da parte del permafrost e dei ghiacci polari uno dei maggiori rischi ambientali e climatici. (si veda qui)

Torniamo a noi; bruciando metano produco 100 parti di diossido di carbonio e bruciando petrolio ne produco circa il 40-50% in più, 150 parti; bruciando carbone circa il doppio; ma questo vantaggio del metano può venire rapidamente soverchiato dalle perdite di metano dovute all’estrazione, al trasporto e allo stoccaggio di metano; il caso Alysso canyon lo abbiamo raccontato da poco.

Si stima che alcuni percento del totale della massa di metano usata come combustibile vengano persi nelle varie fasi; per ogni percento perso l’effetto serra del metano aumenta di una quantità stimabile dall’84-87% al 28-36% in più a seconda se consideriamo un lasso di tempo di 20 anni o 100 anni; dunque è facile comprendere che questo “piccolo” livello di perdita dell’1% renderebbe il metano comparabile su alcune scale temporali con il petrolio; se la perdita cresce perfino col carbone!

Dice EPA:

Methane (CH4) is estimated to have a GWP of 28–36 over 100 years. CH4 emitted today lasts about a decade on average, which is much less time than CO2. But CH4 also absorbs much more energy than CO2. The net effect of the shorter lifetime and higher energy absorption is reflected in the GWP. The CH4 GWP also accounts for some indirect effects, such as the fact that CH4 is a precursor to ozone, and ozone is itself a GHG.

(https://www.epa.gov/ghgemissions/understanding-global-warming-potentials – Learn why)

Possiamo schematizzare così:

CO2 equivalente prodotta da …(effetto a 20 anni)

Metano sola combustione= 100

Petrolio sola combustione=150

Metano con perdite 1%= 184-187

Carbone sola combustione=200

Metano Con perdite 2%=268-274

Metano Con perdite 3%=352-361

CO2 equivalente prodotta da …(effetto a 100 anni)

Metano sola combustione= 100

Petrolio sola combustione=150

Metano con perdite 1%= 128-136

Metano Con perdite 2%=156-172

Metano Con perdite 3%=184-208

Carbone sola combustione=200

A quanto ammontano le perdite di metano?

Negli anni recenti ci sono stati parecchi ricercatori che hanno cercato di rispondere a questa domanda; e la cosa è arrivata al grande pubblico tramite i grandi giornali esteri (non sia mai che quelli italiani se ne occupino); dati definitivi non mi risulta ci siano, ma citerò qui due o tre articoli secondo me importanti per capire le cose.

Il primo è un lavoro di PNAS del 2012 nel quale si conclude:

We find that a shift to compressed natural gas vehicles from gasoline or diesel vehicles leads to greater radiative forcing of the climate for 80 or 280 yr, respectively, before beginning to produce benefits. Compressed natural gas vehicles could produce climate benefits on all time frames if the well-to-wheels CH4 leakage were capped at a level 45–70% below current estimates. By contrast, using natural gas instead of coal for electric power plants can reduce radiative forcing immediately, and reducing CH4 losses from the production and transportation of natural gas would produce even greater benefits. There is a need for the natural gas industry and science community to help obtain better emissions data and for increased efforts to reduce methane leakage in order to minimize the climate footprint of natural gas

Nel secondo lavoro su Environmental Science and Technology del febbraio di quest’anno si conclude che

Presently, there is high uncertainty in estimates of methane (CH4) emissions from natural gas-fired power plants (NGPP) and oil refineries, two major end users of natural gas. … At NGPPs, the percentage of unburned CH4 emitted from stacks (0.010.14%) was much lower than respective facility-scale losses (0.100.42%), and CH4 emissions from both NGPPs and refineries were more strongly correlated with enhanced H2O concentrations (R2avg = 0.65) than with CO2 (R2avg = 0.21), suggesting noncombustion-related equipment as potential CH4 sources. Additionally, calculated throughput-based emission factors (EF) derived from the NGPP measurements made in this study were, on average, a factor of 4.4 (stacks) and 42 (facility-scale) larger than industry-used EFs. Subsequently, throughput-based EFs for both the NGPPs and refineries were used to estimate total U.S. emissions from these facility-types. Results indicate that NGPPs and oil refineries may be large sources of CH4 emissions and could contribute significantly (1.5 ± 0.8 Tg CH4/yr, 95% CL) to U.S. emissions.

Nel terzo, un bel lavoro italiano (Environmental Pollution 164 (2012) 125e131) fatto dai colleghi dell’IBIMET-CNR di Firenze e della Fondazione Edmund Mach di S. Michele all’Adige, in Trentino a pochi chilometri da me (fra l’altro col sempreverde Franco Miglietta) si analizza la situazione di una grande città come Firenze concludendo che:

Long-term fluxes of CO2, and combined short-term fluxes of CH4 and CO2 were measured with the eddy covariance technique in the city centre of Florence. CO2 long-term weekly fluxes exhibit a high seasonality, ranging from 39 to 172% of the mean annual value in summer and winter respectively, while CH4 fluxes are relevant and dont exhibit temporal variability. Contribution of road traffic and domestic heating has been estimated through multi-regression models combined with inventorial traffic and CH4 consumption data, revealing that heating accounts for more than 80% of observed CO2 fluxes. Those two components are instead responsible for only 14% of observed CH4 fluxes, while the major residual part is likely dominated by gas network leakages. CH4 fluxes expressed as CO2 equivalent represent about 8% of CO2 emissions, ranging from 16% in summer to 4% in winter, and cannot therefore be neglected when assessing greenhouse impact of cities.

In tutti e tre i casi si riconosce un ruolo importante e ancora non completamente valutato alle emissioni dirette di metano dagli impianti di produzione, trasporto e distribuzione; questi risultati ci costringono a concludere che la sostituzione del metano agli altri due fossili carbone e petrolio non è necessariamente un vantaggio, ma anzi in alcuni casi potrebbe peggiorare la situazione specie nella sostituzione al petrolio a meno di non ridurre significativamente le perdite di metano in ogni fase della catena produttiva.

I dati americani sembrano più ampi e precisi, quelli europei sono pochi; c’è stato un congresso dedicato nel 2016, partito dalla constatazione che:

If methane leakage  accounts  for  more  than  2.7%  of  gas  produced,  advantages  of  natural  gas  versus coal are lost in the immediate2……  This  raises  the  question  of  what  the  true  carbon  footprint  of  natural gas is once regional leakage rates are taken into account, and therefore its real benefits as  a  “transition”  fuel.

E ancora:

At     a     global     scale,     self reporting   methane   emissions   from   the   O&G   sector   notify   significant   discrepancies:   in   the   Middle   East     areafor     instance,     Kuwait     report    leakage     rates     26     times     lower     than     Bahrain,   although   they   show   similar   natural   gas   production   profiles.   Amongst   the   20   largest   NG   producers, while the US,     Canada     and     Russia     report     gas     leakages     between     1%     and     3%,   other     countries   like   Qatar,     Saudi     Arabia,     China,     Norway     and     the     Netherlands     report     almost   no   emission.

E infine in un lavoro su Nature della fine 2016 dà una valutazione globale vicina al 2%:

We find that total fossil fuel methane emissions (fossil fuel industry plus natural geological seepage) are not increasing over time, but are 60 to 110 per cent greater than current estimates owing to large revisions in isotope source signatures. We show that this is consistent with the observed global latitudinal methane gradient. After accounting for natural geological methane seepage, we find that methane emissions from natural gas, oil and coal production and their usage are 20 to 60 per cent greater than inventories. Our findings imply a greater potential for the fossil fuel industry to mitigate anthropogenic climate forcing, but we also find that methane emissions from natural gas as a fraction of production have declined from approximately 8 per cent to approximately 2 per cent over the past three decades.

Quindi questa stima è che attualmente ci sia una emissione dell’ordine del 2% a livello mondiale.

Non è facile fare i conti; per esempio ENI dichiara da parte propria dei dati come questi; consideriamo solo le emissioni di metano incombusto e da emissioni fuggitive (non stiamo dunque esaurendo il totale delle emissioni di metano nelle varie fasi estrattive, di trasporto e produttive):
2014- 124.000 ton

2015- 99.000 ton

2016- 85.000 ton

Se consideriamo il potenziale GHG di questo metano in termini di CO2 eq a 20 anni troveremo che solo in questi tre anni ha emesso l’equivalente di quasi 27Mton, e ha in programma al 2025 di ridurle al 20% del 2014 , circa 24.000 ton ossia oltre 2 Mton equivalenti.

Nel 2016 l’ENI ha manipolato circa 60Mton di gas naturale (83Gm3), che produrrebbero circa 165Mton di CO2, ma aggiungendoci questa sola parte del metano fuggitivo le emissioni crescerebbero di altri 7 Mton equivalenti; e il resto?

Proprio per questo motivo dare per scontato il vantaggio del metano ed investire sul metano potrebbe costituire una strategia sbagliata; nell’immediato i dati mondiali sono tali da concludere che la sostituzione è nei primi 20 anni certamente peggiorativa rispetto al petrolio e potrebbe risultare utile solo rispetto al carbone sul lungo periodo. Sul lungo periodo, nel quale le cose migliorerebbero da qua a cento anni, dovremo comunque essere passsati ad altre fonti e la conclusione è che il metano non ci da una mano, anzi è peggiorativo rispetto al passaggio diretto all’elettrico.

La strategia in corso nel mondo è il passaggio alle rinnovabili; la strategia da attuare per tener fede all’impegno di Parigi 2015 è passare alle rinnovabili; non ci sono alternativi o trucchi fossili di alcun tipo. Occorre con rapidità stimare le perdite di metano in Europa e porvi rimedio se possibile per sostituire il metano al carbone in alcune delle centrali elettriche, ma in tutti i casi in cui il confronto è metano- petrolio questo è un falso problema e la scelta di una nuova sorgente sarà per l’elettrico non per il gas naturale.

Mentre scrivo queste righe leggo della folle scelta di Trump: uscire da Parigi 2015? Avrà le sue ragioni, ma nulla di razionale; il processo di transizione energetica è inarrestabile. Ma allora direte voi perchè ti preoccupi: beh prima di tutto il diavolo è nei dettagli (ed oggi ne abbiamo visto uno) e inarrestabile non vuol dire che non può essere rallentato; e a noi manca il tempo.

Prossimamente analizzeremo altri elementi della pubblicità di ENI.

 

  • *« “…tutti noi siamo di fronte alla Storia. Io sono un uomo di pace, di idee. Provo sgomento per la vergognosa povertà del mio popolo che vive su una terra molto generosa di risorse; provo rabbia per la devastazione di questa terra; provo fretta di ottenere che il mio popolo riconquisti il suo diritto alla vita e a una vita decente. Così ho dedicato tutte le mie risorse materiali ed intellettuali a una causa nella quale credo totalmente, sulla quale non posso essere zittito. Non ho dubbi sul fatto che, alla fine, la mia causa vincerà e non importa quanti processi, quante tribolazioni io e coloro che credono con me in questa causa potremo incontrare nel corso del nostro cammino. Né la prigione né la morte potranno impedire la nostra vittoria finale…” . »
    (Ken Saro-Wiwa)

Note sulla chimica del tabacco

In evidenza

Luigi Campanella ex Presidente SCI

Le prime manifatture del tabacco risalgono agli anni 1712 e 1743. Prima di queste due date si conoscevano soltanto singole operazioni:essiccazione e macinazione.Il Laboratorio Chimico dei Monopoli di Stato in via della Luce a Trastevere,Roma,deve essere invece considerato la prima istituzione scientifica statale impegnata nel settore del tabacco.

La prima applicazione della Chimica all’industria del tabacco risale ad oltre un secolo dopo la prima manifattura, precisamente al 1877, ma in realtà non portò a risultasti significativi e comunque di un qualche interesse.

Le prime reazioni chimiche di rilievo trattate nel settore del tabacco con metodo scientifico, un vero e proprio salto di qualità rispetto al passato risalgono a Cannizzaro (1893), chimico, scienziato, patriota, senatore.

La reazione che porta il suo nome è la ben nota

         Aldeide benzoica + formaldeide (in ambiente di idrossido di sodio)——-formiato di sodio (o acido formico) + alcool benzilico

A Cannizzaro si deve peraltro anche la determinazione dei pesi atomici di 31 elementi.Tra i suoi studi più significativi quelli sulle condizioni igienico sanitarie nelle solfatare,nelle industrie dei fiammiferi,nella stessa industria del tabacco..Cannizzaro ha svolto anche ricerche nell’analisi dei tabacchi.delle sostanze impiegate nella sua manifattura,dei suoli sui quali la pianta viene coltivata,nonché sugli indicatori a contrasto delle frodi. Le innovazioni a lui dovute nell’industria del tabacco sono tre: fermentazione, lavaggio, macerazione. Per quanto riguarda la fermentazione enzimatica su tabacco essiccato (T=30-60 °C,30-40 gg) l’amido viene ossidato a CO2,si ottengono come prodotti secondari acido acetico,composti amidici e NH3,con perdita di nicotina, nitrato, acidi organici e materia grassa.

La sostanza del tabacco sottoposta ad analisi chimica elementare risulta composta da C,H,O,gruppi acidi ( acido oleico, stearico, palmitico), gruppi alcoolici (glicerolo); risulta inoltre non polare, insolubile in acqua,con densità pari a 0,90-0,98 g/cc. L’analisi chimica rivela anche carbonato di calcio (7-65%) nel residuo insolubile in acqua,la presenza di sali organici (probabilmente per l’addizione che si fa di citrato, malato, tartrato) e quella di carbonato di potassio (1-30%) dopo la combustione.(1 h,circa) .Con analisi qualitative molto accurate è possibile anche evidenziare tracce di numerosi altri composti,quali acido solforico,acido fosforico,acido nitrico,acido cloridrico,anidride solforosa,idrossido di calcio e di sodio,silice.,oltre ovviamente a quanto già detto prima,in particolare la nicotina.E’ questa la componente più rilevante: si tratta di un liquido trasparente, leggermente giallo,di sapore acre ed odore simile a quello della piridina, igroscopico (+177% di acqua all’aria,persa a 150°C),.di densità 1.01, capace di deviare il piano della luce polarizzata verso sinistra e che si accumula nel ciclo vegetativo, con carbonio % fra 0,2 e 10.

A seconda del contenuto in carbonio distinguiamo tabacchi forti con contenuto % in carbonio fra 3 e 10,e tabacchi leggeri con contenuto % in carbonio minore di 3.La nicotina viene estratta per distillazione che può così essere schematizzata

Matrice ____H2SO4 —-evaporazione —-carbonato di ammonio   nicotina———solubilizzazione in alcool etilico——-distillazione

Un’alternativa è il metodo di Schloesing che si basa sulla insolubilizzazione in NaCl della nicotina libera,conseguente precipitazione, dissoluzione in etere e soluzione di carbonato di potassio con ripartizione fra le due fasi e confronto con un tabacco di riferimento per il valore % di nicotina,da fornire come caratteristica.

Esiste anche un terzo metodo,più complesso, ma anche più accurato. Si tratta del Metodo di Pezzolato che si basa sulla distillazione in corrente di vapore acqueo della nicotina liberata per idrolisi basica e poi fissaggio della stessa su acido solforico che viene titolato.

Si può concludere che la chimica ha avuto un ruolo e lo conserva anche oggi nell’industria manifatturiera e nella caratterizzazione dei tabacchi, che nel tempo questa partecipazione si è evoluta da metodi empirici a di natura organolettica a metodi quantitativi affidabili, che ancora si registra una certa carenza di dati sostenuti statisticamente, che per il futuro è da auspicare una standardizzazione delle metodiche analitiche riferite al tabacco.

Si veda anche :

http://media.accademiaxl.it/memorie/S5-VXXXIII-P2-2009/Lenci451-463.pdf

Diverse culture alimentari a confronto.

In evidenza

Marino Melissano*

Vegetariani e vegani: sono sinomini?

La distinzione tra le due culture alimentari, che a un primo sguardo potrebbe apparire molto sottile, segna al contrario una profonda distanza tra due scelte che hanno implicazioni assai divergenti.

Vegetarianesimo

In questa categoria sono inclusi tutti coloro che escludono dalla propria alimentazione la carne di ogni animale (di terra, di aria e d’acqua), senza però rinunciare a prodotti di derivazione animale, come latte, uova, formaggi e latticini, sulla base di motivazioni etiche, religiose e igienistiche.

Questo modello è anche detto latto-ovo-vegetarianismo

Un vegetariano, dunque, non si nutre di pesce. In questa categoria alcuni comprendono anche i cosiddetti semi-vegetariani che, come dice il termine, sono vegetariani… ma non del tutto! I semivegetariani sono coloro che si nutrono di carne, pesce e volatili con una frequenza inferiore a una volta alla settimana. È comunque fuori luogo mettere nel gruppo chi esclude solamente un tipo di carne dalla sua alimentazione e si nutre abitualmente di altre carni (per esempio quella di pesce).

Il termine “vegetariano” non esisteva prima dell’ottocento. In precedenza, ogni regime alimentare di questo tipo era chiamato “pitagorico”, in onore del pioniere di questo tipo di alimentazione in occidente: il matematico Pitagora appunto. L’etimo è il latino “vegetus”, che significa: sano, vigoroso.

Latto-vegetarianismo

A differenza del latto-ovo-vegetarianismo, questo modello alimentare esclude anche le uova. E’ frequente nei Paesi asiatici e indiani in particolare.

Le origini

Le prime attestazioni sul vegetarianismo si ritrovano nelle culture religiose e filosofiche della Grecia e dell’India antiche.

In ambito pitagorico (VI secolo a.C.) è nota l’ingiunzione di astenersi dal cibarsi degli animali (ἔμψύχον ἀπέχου).

Dall’orfismo (VI-V secolo a.C.) deriva l’obbligo dell’astinenza dalle uccisioni, eredità del dramma cosmico dello sbranamento del dio Dioniso da parte dei Titani.(http://www.portalefilosofico.com>orfismo_testo).

Dall’induismo deriva la nozione di ahiṃsā (lett. “astenersi dal recare danno”), che verrà promossa come regola di vita sia dai brahmini, sia dal jainismo, sia dal buddhismo.

I rituali primitivi di caccia

Lo studioso americano Stanley Walens scrive:

molti rituali sintetizzano l’immagine del cacciatore e della sua preda o con l’imitazione mimetica dell’animale o con formule verbali. Le immagini di questi rituali sottolineano la necessità della collaborazione tra cacciatore e preda, affermando che tale collaborazione rientra nel giusto ordine dell’universo. Una volta stabilito il rapporto morale e simbolico corretto, si crede che la preda accetti la morte di buon grado. (Stanley Walens, Animali in “Enciclopedia delle religioni”, vol. 4. Milano, Jaca Book, 1998, p. 70)

E ancora: in molti rituali di caccia si parla non di uccisione, ma di nutrizione e crescita, come se la preda animale dovesse ricevere le stesse cure degli animali domestici e del raccolto. In entrambi si evidenzia la rigenerazione, il ciclo della rinascita e il riconoscimento dei processi dell’universo, di fronte ai quali l’uomo resta impotente. Il mondo antico ritualizza l’uccisione e la conseguente manducazione degli animali, all’insegna del senso di colpa e della riparazione, come nel caso del sacrificio greco, per il quale è indispensabile ottenere l’assenso della vittima, per mezzo dello “hypokyptein”, ed è presente “l’urlo funerario-ololughé”, pronunciato dalle donne al momento dello sgozzamento dell’animale.

Lo storico Vernant nota che i sacrifici cruenti si accompagnano con sacrifici in cui non c’è alcuna uccisione di animali, come nel caso di Apollo Genetor e di Zeus Hypatos in Attica: ciò che viene offerto alla divinità si limita a frutta, olio, focacce e miele. Tali sacrifici, a differenza di quelli cruenti, sono cosiddetti “puri”, e a questo modello sacrificale si appelleranno le scuole vegetariane, orfiche e pitagoriche, che, invece, arrivano a considerare empio il sacrificio dell’animale e la manducazione delle sue carni.

Il vegetarianesimo nel ‘600 e nel ‘700

La Gran Bretagna è considerata la patria del vegetarianismo moderno. Il primo paladino è il cappellaio Roger Crab (1621-1680), che emerge sulla scena inglese durante la rivoluzione degli anni quaranta del Seicento.

Nella seconda metà del Seicento, durante l’espansione coloniale inglese, si aggiungono in favore del vegetarianismo nuovi argomenti. Una figura emblematica di questa fase è lo scrittore e mercante inglese Thomas Tryon (1634-1703), che denuncia il comportamento dell’europeo cristiano, definendolo un oppressore intollerante verso uomini ed animali: abbandona ogni lusso e sposa una dieta vegetariana. The Way to Health è un saggio del 1697, in cui la poetessa Aphra Behn, nell’introduzione, elogia in versi la sua dieta.

Nel Settecento il vegetarianismo inizia ad essere un argomento sostenuto e diffuso anche dai medici (Linneo e discepoli), in nome della salute e delle caratteristiche dell’anatomia e della fisiologia umana che, a partire dall’apparato digerente, dalla dentatura e dalle mani, dimostrerebbero la natura vegetariana dell’uomo. (www.circolovegetarianocalcata.it).

IL VEGETARISMO MODERNO

In Inghilterra il fermento del   vegetarianismo nel panorama  culturale porterà, nella prima metà dell’Ottocento, alla nascita di un movimento vegetariano e alla costituzione della Vegetarian Society, fondata il 30 settembre 1847 a Ramsgate (http://www.vegsoc.org).

Nei decenni successivi sorsero altre società vegetariane anche in altri paesi: nel 1867 il teologo Eduard Baltzer fondò la prima società vegetariana della Germania; verso la fine dell’Ottocento viene fondata la Société Végétarienne de France (http://AVF-www.vegetarisme.fr), mentre l’Associazione Vegetariana Italiana viene fondata a Perugia nel 1952 (http://www.vegetariani.it), con il nome di Società Vegetariana Aldo Capitini, dal grande intellettuale gandhiano, che vedeva nel vegetarismo un ampliamento dell’unità d’amore, in cui tutti gli animali diventano soggetti di una dignità propria da valorizzare e rispettare affettuosamente..

Tra le figure celebri del periodo: Alphonse de Lamartine, Richard Wagner, Lev Tolstoj, Gandhi, Bernard Shaw.

VEGANISMO O VEGETALISMO

La categoria dei vegani è composta da tutti coloro che escludono dalla loro alimentazione animali e prodotti da questi derivati. La loro alimentazione prevede solo l’assunzione di cibi di origine vegetale. Quindi, i vegani, a differenza dei vegetariani, non mangiano né latte né uova, né i prodotti derivati o che contengono questi due cibi. La scelta vegana è una filosofia, uno stile di vita improntato ad un rispetto etico del mondo che ci circonda: vengono esclusi tutti i prodotti derivati dallo sfruttamento degli animali e, quindi, cuoio, lana, seta,pellicce e così via. I vegani non utilizzano inoltre alcun prodotto cosmetico testato su animali, e non partecipano agli spettacoli circensi o a sport come la caccia o l’ippica.

La parola “vegano” è stata coniata per la prima volta nel 1944 da Donald Watson, che fondò, insieme ad alcuni amici, la “Vegan Society” ed è stata formata prendendo la parola inglese “vegetarian” e tenendone solo gli estremi (veg….an): l’inizio e la fine del vegetariano. Watson, già da piccolo, osservando degli animali presenti nella fattoria di suo zio, ebbe modo di dire: “Ero circondato da animali interessanti. Tutti loro “davano” qualcosa: il cavallo della fattoria trainava l’aratro, un altro tirava il calesse, le vacche “davano” il latte, le oche “davano” le uova e il gallo era un’utile sveglia. All’epoca non avevo ancora realizzato che avesse anche un’altra funzione. Le pecore “davano” la lana. Non riuscivo a capire cosa “davano” i maiali, ma mi sembravano delle creature tanto amichevoli, sempre felici di vedermi.” Poi ebbe modo di assistere alla macellazione dei maiali e divenne vegetariano all’età di 4 anni.

Data la mancanza di carne, pesce, formaggi e derivati sono diffusi surrogati, quali soia e suoi derivati (latte, yogurt, burro, panna di soia, tofu e lecitina) o seitan, ricavato da cereali deglutinati. Dall’alimentazione vegana sono esclusi alcolici, tabacco e bevande stimolanti, come caffè e tè, anche se è consentito un uso limitato di tè verde, sostituito dal tè kukicha, infuso ottenuto dalla Camellia Sinesis, privo di teina e ricco di calcio e ferro.

Sono consigliati cibi arricchiti artificialmente, come si può vedere dalla piramide vegana, per far fronte soprattutto alla carenza di Vi. B12.

CRUDISMO VEGANO (Raw food)

Ammette esclusivamente cibi vegetali non sottoposti a trattamenti termici oltre i 42 °C (è ammessa l’essiccazione). Questo modello dietetico è composto prevalentemente da frutta (70-80%), verdura, soprattutto a foglia verde (10-20%), noci e semi vari (5%), oltre a cereali e legumi germogliati. È da distinguersi dal crudismo non vegano, in cui si utilizzano latticini non pastorizzati e perfino carne e pesce crudi.

LA MACROBIOTICA (Makròs+bios = lunga vita)

Antichissima filosofia orientale, nata oltre 5000 anni fa, il cui orientamento è rappresentato da una visione olistica dell’uomo: ogni elemento è in equilibrio con gli altri e il cibo è fondamentale per mantenere l’armonia tra la mente e il corpo.

Diffusa dal medico e filosofo giapponese Sakurazawa, noto con lo pseudonimo di Ohsawa, nato a Tokyo nel 1893, è l’applicazione dei principi filosofici orientali alla pratica giornaliera, dove l’equilibrio, anche alimentare, è raggiunto attraverso gli “occhiali magici”, cioé I principi dello Yin (forza centrifuga-cibi acidi, come latte e derivati, frutta,tè, spezie) e dello Yang (forza centripeta-cibi alcalini come sale, carne, pesce, pollo, uova). Questi due principi sono opposti, ma complementari.

Secondo Ohsawa, seguendo quotidianamete una corretta alimentazione, è possibile mantenere l’equilibrio Yin-Yang e, dunque, un buon livello di salute. Esistono comunque dei cibi “bilanciati”, quali, ad esempio, i cereali, i legumi e i semi oleosi.

La dieta macrobiotica abolisce i cibi sofisticati e predilige alimenti di produzione naturale. I cereali devono essere non raffinati, integrali e, in questo gruppo, rientrano il “kokoh”, mix di farine provenienti da cereali differenti, arricchite con sesamo e soia e “l’arrowroot”, fecola ricavata dall’omonima pianta.

Tra gli alimenti macrobiotici ricordiamo:

– il tahin, succedaneo del burro, ricavato dal sesamo, aggiunto spesso alla salsa di soia per il condimento di zuppe;

– il gomasio, ricavato dalla lavorazione del sale marino, unito ai semi di sesamo;

– le alghe: tra le più note l’iziki, che si consuma con il tamari (salsa di soia); il wakame; il kombu;

la nato; il dashi; la dulse, dal colore rosso porpora;

– i legumi, soprattutto: lenticchie, ceci, soia e azuki (fagiolo rosso di soia). L’acqua di cottura dei legumi è consigliata come bevanda, perché ricca di sali minerali e vitamine.

Tra le regole da osservare: l’eliminazione di zucchero, dolci, caramelle e miele, frutti esotici, patate, pomodori, melanzane, latte e derivati, verdure surgelate, spezie, sale comune, caffé (al suo posto si possono usare surrogati, quali il “jannoh”, ricavato dall’unione tra frumento, soia, bardana e radici di tarassaco torrefatte; o il “dendelio”, ottenuti da radici di tarassaco e cicoria torrefatte).

La macrobiotica predilige i prodotti della pesca alla carne e consiglia una prolungata la masticazione al fine di garantire l’efficacia digestiva e l’appagamento gustativo.

(da Marino Melissano – Alimenti e alimentazione – Edagricole)

ALIMENTAZIONE ONNIVORA

In biologia un organismo è quello che si alimenta sia con prodotti di origine animale (carne, uova, latte e derivati, pesce e prodotti del mare), che vegetale (frutta, verdura, cereali e legumi).

Secondo i principi della Scienza dell’Alimentazione questo sarebbe il regime alimentare più adatto anche all’uomo, che ha bisogno di una dieta bilanciata composta da proteine, carboidrati, grassi, vitamine e minerali.

Nell’ambito dell’alimentazione onnivora la Dieta mediterranea è la più famosa e la più equilibrata.

Essa si basa su un consumo moderato di grassi da prodotti animali, privilegiando frutta, verdura, legumi, cereali integrali, frutta secca, pesce e olio di oliva Anche il vino, bevuto moderatamente durante i pasti, , rappresenta una forma di protezione per il suo contenuto di antiossidanti.

Per tutti i motivi descritti, i suoi sostenitori ritengono che la dieta mediterranea sia quella più adeguata a coprire i normali fabbisogni nutrizionali.

Essa normalmente prevede cinque pasti giornalieri di cui tre principali (colazione, pranzo e cena) e due spuntini, a metà mattinata e nel pomeriggio. La composizione media degli alimenti

comprende:

dal 55 al 65% di carboidrati, dei quali circa il 90% costituiti da zuccheri complessi e circa il 10% da zuccheri semplici;

dal 10 al 15% di proteine, delle quali i 2/3 di origine animale e 1/3 di origine vegetale dal 25 al 30% di grassi, soprattutto insaturi.

EQUILIBRIO NUTRIZIONISTICO

Le quantità giornaliere raccomandate di macro-nutrienti (Lipidi-Protidi-Glicidi) e di micronutrienti (vitamine e Sali minerali) sono le seguenti:

Glucidi: 315-350 g;

Protidi: 55-60 g;

Lipidi: 45-55 g;

Vit. A: 500 mcg; (fonti di origine animale, sedano, broccoli, cavoli, frutta colorata);

Vit. B1: 1,0 mg; (fonti di origine animale, lievito di birra, soja, legumi, asparagi, germe di

grano, cereali integrali, noci, cicoria, spinaci, bietole, alga spirulina)

Vit. B2: 1,3 mg; (fegato e frattaglie, latte, lievito di birra, muesli, germe di frumento, radicchio verde, soja secca)

Vit. B12: 2,0 mcg; (vongole, ostriche, polipo, sgombri, salmone, crostacei, sardine e aringhe, fegato, uova, yogurt, latte e latticini, cereali e prodotti di soia fortificati)

Niacina (Vit. PP): 14 mg;

Vit. C: 60 (donne)-75 mg (uomini); (succo d’uva, peperoni, latte, kiwi, cavoli e cavolfiori,broccoli, fragole, agrumi, radicchio verde, pomodori)

Vit. D: 10 mcg; (olio di fegato di merluzzo, sgombro, anguilla, trota, salmone affumicato, pesce spada, uova)

Fe: 10 mg; (frattaglie, carne rossa, carne di tacchino, merluzzo, spigole, salmone, molluschi, seppia, alici

DIETE A CONFRONTO

L’alimentazione tradizionale, e specialmente la dieta mediterranea, per 2.000 Kcal mediamente occorrenti ad un adulto in attività lavorativa moderata, fornisce:

325 g di glucidi (65%)

55 g di lipidi (25%)

57 g di proteine   (10%) e, se ben equilibrata, tutti gli oligoelementi; quindi, risulta nutrizionisticamente equilibrata.

Premesso che in Italia il numero di vegetariani e vegani ha raggiunto un picco storico dell’8% della popolazione, pari a quasi 5 milioni di cittadini (dati Eurispes 2016), che il 7,1% si dichiara vegetariano (contro il 5 del 2015) e l’1% vegano, corrispondente a 600.000 persone;

la dieta vegetariana, contrariamente ad altre correnti di pensiero simili, risulta sostenibile e potenzialmente equilibrata.

La dieta vegetariana costituisce un regime alimentare ricchissimo di antiossidanti, provitamine A (beta-carotene), vitamina C, acido folico, potassio, magnesio, fitosteroli e fibra alimentare.

La dieta vegana non può essere classificata quale regime alimentare equilibrato e, per essere protratta nel lungo termine, necessita dell’utilizzo di alimenti fortificati o di integratori alimentari; essa, oltre a non apportare le giuste quantità di alcuni nutrienti, contiene notevoli concentrazioni di agenti anti-nutrizionali chelanti, come: tannini (antiossidante), ossalati e fitati, che contribuiscono a ridurre ulteriormente l’assorbimento di minerali come ferro, calcio, zinco e selenio.

D’altro canto, la dieta vegana risulta molto utile nella prevenzione dell’aterosclerosi.

Concludiamo che, con le giuste integrazioni, anche le diete vegetariane e vegane possono risultare equilibrate.

Polemiche in corso

Ma allora, perché tante polemiche e opposti estremismi? Scontri ideologici accesissimi su giornali, tv e FB: abbiamo letto frasi quali animalisti talebani, nazivegani e, in risposta, carnivori assassini, macellai killer!

Giuseppe Cruciani, di Radio 24, conduttore de “La Zanzara”, contestato da un gruppo di animalisti.

Bimbo di 15 mesi, che pesava quanto uno di 3 mesi, ricoverato in stato di malnutrizione a causa di una dieta rigidamente vegana, che il Tribunale di MI ha tolto ai genitori ed affidato ai nonni.

Eppure, l’indagine Eurispes ci dice che il 46,7% di coloro che si dichiarano vegetariani o, ancor più, vegani, sono mossi da ragioni salutistiche; il 30% dalla sensibilità verso gli animali; il 12% dall’attenzione per l’ambiente.

Lo chef Fabio Picchi, autore di “Firenze-Passeggiate tra cibo e laica civiltà”, inno all’orgoglio carnivoro, rispettosamente dice: “sono così rispettoso del pensiero altrui, che non riesco a deridere chi non mangia carne. Rispetto i vegani e pretendo rispetto. Tuttavia, trovo barbaro incolpare chi mangia un piccione una volta l’anno e sottacere chi avvelena la terra e le nostre vite”.

Questa è la strada da seguire, quella del rispetto reciproco, ma occorre anche un’informazione-formazione capillare di tutti i cittadini, in modo che tutti, nel rispetto dei differenti stili di vita, imparino come cibarsi in modo equilibrato.

Riferimenti.

http://veganogourmand.it/consigli/differenza-tra-vegetariano-e-vegano/

https://it.wikipedia.org/wiki/Vegetarianismo

https://it.wikipedia.org/wiki/Diete_vegetariane

http://www.gazzettadelgusto.it/alimentazione-diete/alimentazione-onnivora/

http://www.my-personaltrainer.it/alimentazione/esempio-dieta-vegana.html

*Marino Melissano è stato fino a poco tempo fa vicepresidente di Altroconsumo, uno dei pochi chimici (già docente universitario, libero professionista, coordinatore di progetti europei, membro dell’ordine dei Chimici in Trentino) in una posizione chiave nelle associazioni di consumatori e ambientalisti.

La costante R nell’equazione di stato dei gas.

In evidenza

Rinaldo Cervellati

La bontà (validità) di una teoria scientifica dipende essenzialmente da due fattori: in primo luogo deve riprodurre tutte le osservazioni e i dati sperimentali da cui è scaturita con un processo principalmente induttivo, deve poi prevedere fatti nuovi, processo essenzialmente deduttivo, accessibili di verifica sperimentale. Questa seconda caratteristica identifica il potere di previsione della teoria, quanto maggiori sono le conseguenze verificabili (e verificate), tanto più alto è il potere di previsione della teoria che ne allarga anche l’ambito di applicazione.

La teoria cinetica dei gas è un esempio tipico di un’ottima teoria, ne abbiamo parlato diffusamente in un precedente post. Dall’elaborazione fisico-matematica del più semplice modello pensabile per un gas, Krönig e Clausius dedussero un’equazione che riproduceva anzitutto le leggi empiriche sul comportamento di una massa gassosa contenuta in un recipiente al variare di volume, pressione e temperatura a due a due mantenendo la terza costante.

L’ingegnere e fisico francese Benoit-Paul Emile Clapeyron[1] nel 1834 combinando la legge di Boyle-Mariotte con quella di Gay Lussac ottenne quella che è oggi nota come equazione di stato:

pv = R(267 + t), con:

R = povo/(267 + to)

dove il pedice o indica la stessa massa di gas a temperatura to diversa da t [1].

Benoit Clapeyron

Nel 1850, il fisico e matematico Rudolf Clausius (1822-1888) ricalcolò il valore della costante entro parentesi in base ai risultati più precisi del chimico e fisico francese Henri Victor Regnault[2], riscrivendo l’equazione di stato come:

pv = R(273 + t)

e, nel 1864 semplificò ulteriormente l’equazione sostituendo la temperatura assoluta T alla quantità entro parentesi, sicché:

pv = RT

Henri-Victor Régnault

Rudolf Clausius

Da buon francese Clapeyron attribuì interamente (trascurando del tutto Boyle) a Edmé Mariotte la legge pv = k, Clausius non trovò nulla da dire, anzi propose esplicitamente che l’equazione fosse chiamata di Mariotte-Gay Lussac o, in breve, legge M-G. [2]

Sia Clapeyron sia Clausius utilizzarono il volume specifico (volume per unità di massa) piuttosto che il volume molare di gas nelle loro equazioni. Ciò significava che la loro costante dei gas R non era universale per tutti i gas, ma era piuttosto una costante specifica il cui valore variava da un gas all’altro ed era, come nota Clausius, approssimativamente inversamente proporzionale alla densità del gas in questione.

La prima persona a convertire la costante specifica di Clapeyron e Clausius in una costante universale dei gas sembra essere stato il chimico tedesco, allievo di Clausius, F. Horstmann[3], che nel 1873 ha riscritto l’equazione di stato come:

up = RT

F. Horstmann

dove p e T hanno il loro significato precedente ma u è “il volume di un peso molecolare [cioè di una mole] del gas”, R è la costante della legge G-M per quanto riguarda il volume molare [3].

Ci si domanda perché Clapeyron abbia scelto proprio la lettera R per la costante nella sua equazione? Poiché egli non scrisse nulla in proposito, si possono formulare due ipotesi speculative: o si tratta di una scelta casuale, oppure proviene dal latino ratio, ovvero dall’equivalente francese rapport o raison visto che Clapeyron aveva notato che il valore della costante per ogni gas poteva essere ottenuto valutando la costanza del rapporto pv/(267 +t) su un intervallo di pressioni e temperature, osservazione ribadita da Clausius con il rapporto migliorato pv/(273 +t) [4].

Dato la tendenza della IUPAC a assegnare nomi di scienziati famosi alle costanti, W.B. Jensen [4] suggerisce che potrebbe essere opportuno affermare che la lettera R sia in onore di Regnault, i cui dati sperimentali accurati furono utilizzati da Clausius non solo per correggere il fattore di conversione tra le scale centigrada e assoluta di temperatura, ma anche per valutare il valore di R utilizzando il rapporto di cui sopra.

È poi interessante notare che Clausius era consapevole che i dati di Regnault dimostravano chiaramente che:

più lontano, per quanto riguarda la pressione e la temperatura, un gas è dal suo punto di condensazione, più sarà la legge corretta [cioè più costante il valore di R]. Sebbene la sua precisione per i gas permanenti [reali] nel loro stato comune sia così elevata, che nella maggior parte delle indagini può essere considerata perfetta, per ogni gas si può immaginare un limite, fino al quale la legge è perfettamente vera; e nelle pagine seguenti, dove i gas permanenti vengono trattati come tali, presumeremo l’esistenza di questa condizione ideale.[5]

Nel 1864, Clausius si riferì a questa condizione ideale coniando il termine gas perfetto, come riportato nella nota a piede di pagina 22 del rif. [2].

Bibliografia

[1] E. Clapeyron, Mémoire sur la puissance motrice de la chaleur, J. l’ecole polytechnique, 1834, 14, 153-190. Scaricabile da internet

[2] R. Clausius, The Mechanical Theory of Heat, Van Voorst: London, 1867, p. 259 consultabile in internet

[3] A. F. Horstmann, Theorie der Dissociation, Ann. Chem., 1873, 170, 192-210.

[4] W.B. Jensen, The Universal Gas Law Constant, J. Chem. Educ., 2003, 80, 731-732

[5] R. Clausius, Über die bewegende Kraft der Wärme, und die Gesetze, welche sich daraus fur die Warmelehreselbst ableiten lassen, Ann. Phys., 1850, 79, 368-397.

[1]Benoit-Paul Emile Clapeyron (1799-1864) fisico francese è considerato uno dei fondatori della termodinamica, a lui si deve la presentazione in maniera analitico-grafica del lavoro di Carnot, la precisazione del concetto di trasformazione reversibile e l’enunciato del principio di Carnot come 2° Principio della Termodinamica. Sue le equazioni che caratterizzano le transizioni di fase.

[2] Henri Victor Regnault (1810-1878), chimico e fisico francese, è noto per le sue accurate e precise misure delle proprietà termiche dei gas, fu mèntore di William Thomson (lord Kelvin).

[3] August Friedrich Horstmann (18421929), chimico tedesco, fu allievo di Clausius, noto specialmente per il suo contributo allo sviluppo del concetto di mole. v. anche: G. Moretti: La legge dei gas ideali: dalla formula specifica per ogni gas alla costante molare R, Atti del XIV Convegno Nazionale Storia e Fondamenti della Chimica, Rendiconti della Accademia Nazionale delle Scienze detta dei XL, Serie V, vol. 35, Parte II, Tomo II, 263-279.

Due parole su chi controlla le acque potabili.

In evidenza

Mauro Icardi

La scorsa settimana una delle “Pillole di Mercalli”, filmati che il noto climatologo dedica ai temi ambientali e che vanno in onda su Rai News, è stata dedicata all’eccessivo consumo di acqua in bottiglia da parte degli Italiani.

Terzi a livello mondiale dopo Messico e Tailandia.

Ho visionato il filmato sul sito della Rai e ho voluto vedere qualche commento a proposito. A parte il solito schierarsi a favore o contro il consumo di acqua in bottiglia per ragioni diverse (sostenibilità ambientale su tutte, ma anche abitudini e gusti personali), ho potuto notare come al solito il proliferare di luoghi comuni decisamente banali.

Si sa che in generale le persone si lamentano dell’odore di cloro dell’acqua potabile (problema che è risolvibilissimo con il semplice utilizzo di una caraffa dove far riposare l’acqua per circa trenta minuti).

Molti sono addirittura convinti che l’acqua potabile sia nociva per la salute. E non è semplice far capire che un gestore di acquedotto ricorre alla disinfezione per consegnare l’acqua completamente esente da microorganismi potenzialmente patogeni.

Devo dire che ormai mi sono quasi rassegnato a questo tipo di commenti. Ma non ho resistito a dover rispondere ad un commento che in maniera superficiale e direi offensiva, sosteneva che la fiducia nell’acqua in bottiglia risiedesse nel fatto che le aziende imbottigliatrici “fanno i controlli”, e che conseguentemente i controlli effettuati dai gestori del ciclo idrico fossero insufficienti, o addirittura mancanti.

Ho risposto al commentatore, scrivendo che, se era così sicuro che gli addetti al controllo delle acque potabili della sua zona adottassero comportamenti omissivi nello svolgimento delle analisi , non gli restava che presentare una circostanziata denuncia alla Procura della Repubblica.

Assumendosi l’onere e la responsabilità di quanto affermava. Inutile dire che non ho ricevuto nessuna risposta a questo mio commento.

Forse avrei dovuto ignorare questo commento, come molti altri. Commenti che riguardano gli argomenti più diversi. Sulla possibilità che il web amplifichi quelle che un tempo erano le chiacchiere da bar si espresse già Umberto Eco. E sulla propagazione di bufale e leggende per meccanismi di conferma che si sviluppano per esempio tra chi crede alle scie chimiche, e sulla facilità con cui queste possono prendere piede ci sono già molti studi, e molti interessanti articoli. Uno molto interessante a firma di Walter Quattrociocchi è uscito sul numero 570 de “Le scienze” nel Febbraio 2016.

Ma su una cosa di questa importanza, non ho voluto far finta di niente. Mi sono sentito chiamato in causa in prima persona, ed ho pensato anche a tutte le persone che conosco negli incontri di lavoro, e che si occupano di qualità dell’acqua potabile.

Le società di gestione e conseguentemente gli addetti sono tenuti a rispettare quanto disposto dal Dlgs 31 che regola i controlli sulle acque destinate al consumo umano.

I controlli sono sia interni, cioè svolti dall’azienda di gestione dell’acquedotto, che esterni cioè effettuati dalle aziende sanitarie locali. I gestori sono soggetti ad un numero definito di analisi in funzione del volume di acqua erogata.

Questo il link del Dlgs 31.

https://www.arpal.gov.it/images/stories/testi_normative/DLgs_31-2001.pdf

Mi chiedo come si possa pensare che le aziende sanitarie, i gestori di acquedotto possano mettere in pratica comportamenti omissivi.

Siamo tenuti a conservare i risultati delle analisi per cinque anni, a pubblicare i rapporti di prova sul sito della nostra azienda per ottemperare a criteri di qualità e di trasparenza.

Ma soprattutto siamo coscienti di fornire un servizio. Come addetti al laboratorio poi siamo impegnati in un lavoro continuo di aggiornamento sia normativo che analitico. Le aziende acquedottistiche dovranno nel futuro sviluppare un proprio “Water Safety Plan” , cioè monitorare i fattori di rischio non solo a livello analitico, ma territoriale e di rete.

Siamo consapevoli dell’importanza della risorsa acqua.

Io ho come hobby il ciclismo. E ogni volta che faccio uscite in bicicletta rivolgo sempre un ringraziamento ai colleghi di altre aziende, quando sosto presso una fontanella o ad una casa dell’acqua. Al loro lavoro che mi permette di combattere sete e caldo, soprattutto in questi giorni.

Ma vorrei dire un’ultima parola a chi crede che non si facciano i controlli. Come chimici, come biologi, come tecnici di rete siamo vincolati ad un importante valore. Sappiamo di svolgere un servizio e conosciamo cosa significa una parola: etica. La conosco personalmente come chimico che in qualche caso ha rinunciato a ferie o permessi per terminare un’analisi urgente o la lettura di una piastra di microbiologia.

La conoscono i colleghi che a qualunque ora del giorno e della notte sono chiamati ad intervenire per ripristinare la fornitura dell’acqua. Lo sostengo da sempre. Non è con la demagogia o il sensazionalismo che si possono affrontare questi problemi. E questa cosa vale non solo per la mia azienda.

Riflettere un attimo prima di dire cose insensate è una virtù ormai scomparsa.

Moda sostenibile.

In evidenza

Luigi Campanella, ex Presidente SCI

L’aggettivo sostenibile è usato ed abusato, talvolta anche a sproposito. Ogni campo dell’attività umana si compiace di essere definito sostenibile: dal turismo alla produzione, dalla pratica alla sicurezza, dall’economia alla medicina.

Oggi vi voglio proporre un settore a cui forse pochi pensano per abbinare ad esso l’aggettivo in questione ed al quale l’aggettivo sostenibile si adatta perfettamente: parlo della Moda sostenibile.

Si tratta in pratica di definire le linee guida sui requisiti eco-tossicologici per gli articoli di abbigliamento, pelletteria, calzature ed accessori Tali linee si devono intendere applicate al prodotto finito ed ai materiali componenti e rivolti a quanti contribuiscono alla sua ideazione, realizzazione, distribuzione commercializzazione. Il fine è l’introduzione ed evoluzione di pratiche virtuose e sostenibili attraverso una corretta gestione dell’utilizzo delle sostanze chimiche nella filiera produttiva per garantire sugli articoli prodotti standard di sicurezza a beneficio dei consumatori

I riferimenti non possono che essere i principali regolamenti e leggi internazionali,a partire in questo periodo dal REACH, ma non solo: si pensi al CPSIA americano, ed agli standard cinesi e giapponesi ed i principali standard tecnici internazionali

Nell’ambito di utilizzo delle sostanze chimiche potenzialmente pericolose bisogna distinguere fra quelle che risultano ristrette sull’articolo e quelle che invece compaiono nel processo produttivo. Peraltro l’utilizzo delle sostanze nelle filiere produttive,chimiche e manifatturiere,può essere molto diverso in relazione alla quantità,alle miscele che si producono,alla tossicità,ai cicli lavorativi, alle macchine utilizzate.

Le sostanze chimiche in una filiera tessile possono svolgere fino ad 80 funzioni (es. ammorbidente, antimacchia, antipiega, batteriostatico, candeggiante ,detergente ,fissatore , disperdente, enzima proteasi, impermeabilizzante, ritardante, lubrificante, schiumogeno, uv assorbente …).

I coloranti, nello specifico, sono divisi in classi ed ognuna è ricca di composti finalizzati per l’uso in base al tipo di tessuto da trattare.

I composti chimici di base utilizzati nella filiera tessile sono di natura diversa:acidi (acetico, formico, solforico, cloridrico, ossalico), basici (ammoniaca, sodio idrossido, calcio idrossido), estratti vegetali (castagno, mimosa…..), depilanti (sodio solfidrato, sodio solfuro), concianti minerali (solfato basico di cromo, sali di Al, Zr, Ti, Fe), concianti organici (glutaraldeide, oxazolidina, sali di fosfonio)

Gli approcci adottati sono 2.

Proattivo: considera i limiti di presenza di residui di sostanze negli articoli

Avanzato : considera richieste di settore avanzate come obiettivi da raggiungere

Per ogni tipo di composto sono fissati dei limiti di presenza nel tessuto o prodotto finale e nell’impianto produttivo e dei metodi ufficiali ed accreditati di analisi.

Nota del postmaster: si vedano anche articoli prtecedenti sul medesimo tema:

https://ilblogdellasci.wordpress.com/2017/02/15/chimicamente-alla-moda-2/

https://ilblogdellasci.wordpress.com/2015/08/10/la-chimica-e-sempre-piu-di-moda-negli-istituti-tecnici-2-parte/