Colla Neanderthal: garantita 200.000 anni.

In evidenza

Claudio Della Volpe

(una parte del testo è tradotto liberamente dall’introduzione del lavoro citato appresso)

In altri articoli e post ho ricordato che la attività chimica dell’uomo è iniziata molto presto; a parte il fuoco, che risale a 1 milione di anni fa e che è addirittura precedente a Homo Sapiens Sapiens, essendo un ritrovato di Homo erectus, i ritrovamenti di Blombos dimostrano che 100.000 anni fa Homo Sapiens svolgeva in Sud Africa una attività chimica propriamente detta consistente nel preparare pigmenti e la svolgeva in un sito apposito, non usato per altre attività.

C’è un ulteriore prova di come la Chimica sia una attività “umana” in senso proprio, attinente ad altre specie di ominidi, diverse da noi ed è la produzione di adesivi da parte di Homo sapiens Neanderthalensis, una specie umana che ha preceduto la nostra nell’ambiente europeo che era all’epoca, attorno a 200.000 anni fa, seconda metà del Pleistocene, più difficile di quello africano da cui provenivano i nostri antenati propriamente detti (in pratica possiamo metterla così: mentre il clima europeo cambiava, i nostri antenati furono immigrati invasori che spodestarono i Neanderthal nell’ambiente europeo il cui clima andava lentamente riscaldandosi).

L’uomo di Neandertal che è diventato parte della nostra cultura, delle nostre storie, dei nostri modi di dire ci ha certamente lasciato anche eredità genetiche, ma soprattutto culturali; piano piano si evidenzia che le differenze fra noi e “loro” non erano poi così forti.

Oltre al fatto che aveva sensibilità artistica e che seppelliva i morti, ci sono parecchie evidenze sperimentali che Neanderthal gestiva il fuoco e produceva ed usava adesivi per bloccare le sue punte di freccia di pietra su un’asta di legno, una sofisticata attività da chimico e tecnologo.La produzione e l’impiego di adesivi per hafting (adesivi da traino, che consentono di attaccare un dispositivo ad un supporto, per esempio una punta ad una freccia o ad un giavellotto, un metodo sviluppato durante il Paleolitico che ha potenziato enormemente la capacità umana di procurarsi cibo) è diventato un punto focale nel dibattito sulle capacità cognitive e tecnologiche dei Neanderthaliani e degli esseri umani primitivi.

Journal of Archaeological Science 33 (2006) 1310e1318 A new Palaeolithic discovery: tar-hafted stone tools in a European Mid-Pleistocene bone-bearing bed, di Paul Peter Anthony Mazza et al.

Gli adesivi sono una delle più antiche tecnologie trasformative conosciute e la produzione di catrame è vecchia di almeno di 200 mila anni. Il catrame è sintetizzato dalla distillazione asciutta (distruttiva) di materiale organico, comunemente la corteccia di betulla (Betula sp.) o di pino (Pinus sp.). La distillazione della corteccia è considerata un processo complicato che richiede pianificazione, conoscenza dei materiali e l’astrazione. I più antichi strumenti di pietra a catrame conosciuti sono stati scoperti in un sito di Pleistocene medio in Italia, (Campitello, in Valdarno) durante un periodo in cui solo Neanderthaliani erano presenti in Europa. L’età di questi reperti è stimata in circa 200.000 anni, dunque ben più antichi di quelli di Blombos.

Sono stati trovati anche grumi e residui adesivi su utensili in pietra su due siti di Neanderthal in Germania, appartenenti a 40-80 ka e ~ 120 ka . L’evidenza diretta dell’uso di adesivi in Africa è più numerosa ma risale solo a ~ 70 Ka. Tali adesivi sono di composizione più complessa ma gli adesivi composti condividono molte analogie con la produzione di catrame di betulla e possono essere altrettanto sensibili agli additivi o post processi di produzione. La produzione di catrame nell’Europa paleolitica è a sua volta utilizzata per argomentare le somiglianze tra le capacità tecnologiche dei neanderthaliani e dei loro emulatori in Africa.

La corteccia di betulla è più adatta alla produzione di catrame rispetto ad altri materiali, ma l’assenza di betulle in Africa potrebbe essere una ragionevole spiegazione del diverso tipo di adesivo usato.

Nei periodi storici e moderni, il catrame è stato prodotto su una scala industriale utilizzando grossi tumuli di terra o in forni usando contenitori in ceramica o in metallo. Non è chiaro come è stato prodotto durante il Pleistocene quando i contenitori in ceramica sono rari o sconosciuti. I tentativi sperimentali precedenti alla produzione di catrame utilizzando la tecnologia aceramica o paleolitica spesso non forniscono dettagli. Inoltre, la resa in catrame risultante è sconosciuta o troppo piccola da misurare (ad esempio residui superficiali che rivestono una termocoppia) e quindi non sono sufficienti per bloccare in modo efficace uno strumento. Non possiamo comprendere appieno le complessità cognitive e ricostruire il grado richiesto di innovazione associato alla produzione di catrame se non sappiamo quali metodi di produzione erano disponibili.

Nel lavoro di cui parliamo qui, che è un lavoro di archeologia sperimentale si è cercato di riprodurre un metodo di produzione del catrame di betulla con metodi disponibili all’uomo di Neanderthal e in quantità sufficienti allo scopo.

SCIENTIFIC REPORTS 7-8033 Experimental methods for the Palaeolithic dry distillation of birch bark: implications for the origin and development of Neanderthal adhesive technology di P.R.B.Kozowyk et al. liberamente scaricabile qui. Un commento semplificato scaricabile qui.

Quindi se volete si è trattato di riprodurre i metodi di questi chimici-tecnologi primitivi che erano fondamentalmente dei costruttori di frecce e lance.

Gli autori hanno testato tre procedure diverse qui sotto rappresentate che danno produzioni crescenti con la complessità del metodo:

In tutti i casi l’elemento critico è riprodurre il contenimento “ceramico” che si è usato anche in tempi moderni; la metodologia richiama ampiamente la tradizione della produzione di carbone di legna che affonda anch’essa in una storia certamente millenaria; l’altro elemento chiave è il controllo della temperatura. La produzione di fuoco in modo ripetitivo da parte dei Neanderthal è stato spesso contestato ma test di questo tipo confermano che in effetti essi erano ragionevolmente capaci di un buon controllo del fuoco se sono stati in grado di produrre dispositivi come quelli ritrovati in Toscana e in Germania.

La cosa che ha più colpito me come scienziato che si occupa di adesione è che l’adesivo in questione è rimasto adeso al supporto all’aperto per 200.000 anni (il legno verosimilmente si è degradato e non conosco colle moderne in grado di assicurare una tenuta di questa durata); come chimico invece mi ha colpito il fatto che la chimica è in grado di svolgere qui un ruolo duplice: essa è contemporaneamente l’oggetto di studio ma è anche il metodo di indagine, è una specie di riscoperta delle proprie origini, del proprio punto di partenza, di quella enorme base sperimentale che si è poi elaborata in secoli e secoli per divenire solo di recente una teoria astratta.

Fra l’altro mi chiedo quanto invece potrebbe essere utile riproporre queste tecniche (quelle primitive o legate alla vita quotidiana) nell’insegnamento elementare della chimica a scuola.

Chimbufale.1. Accendere il fuoco con una batteria al limone.

Claudio Della Volpe

Accendere il fuoco con una batteria al limone.E altre storie.

La lotta alle bufale è stato sempre un nostro ambito, ben prima che, come succede oggi, perfino i governi cercassero di impadronirsene; e sinceramente preferiamo che sia la rete a generare gli anticorpi, non strutture centralizzate che potrebbero mascherare facilmente attacchi alla libertà di stampa. Esistono d’altronde siti antibufale “spontanei”, specializzati e famosi, come quello di Paolo Attivissimo (http://bufalopedia.blogspot.it/p/cose-la-bufalopedia.html).

Bufale chimiche ne girano parecchie.

Oggi parliamo qui della bufala di accendere il fuoco con una batteria al limone che compare da mesi sulle pagine video della Stampa senza commenti negativi da parte della redazione. Ma potete trovarla anche su Youtube o in giro per la rete; spiace che un giornale così diffuso come la Stampa non abbia i necessari anticorpi.

http://www.lastampa.it/2016/03/15/multimedia/scienza/sapete-come-accendere-un-fuoco-con-un-semplice-limone-9ty316mZxRrIHN7RJOiNWJ/pagina.html

La Stampa: Sapevate che un limone può essere utilizzato per accendere un fuoco? Il segreto è trasformarlo in una batteria artigianale, che funziona con elettrodi di rame e zinco. Nel video pubblicato da NorthSurvival , l’esperimento è presentato come trucco salva-vita, nel caso ci si perda nel bosco, ed è realizzato con fermacampioni di rame, chiodi di zinco, un pezzo di fil di ferro e un po’ di lana d’acciaio. Per le sue caratteristiche chimiche l’agrume può innescare un processo che genera energia, anche pochi Volt sono sufficienti per questo scopo.

lemon1L’origine di questa bufala è un sito americano, di “sopravvivenza”, Northsurvival; siti di questo tipo sulla base della diffusa paura di una catastrofe mondiale di qualche genere parlano di continuo di come fare a sopravvivere; d’altronde ci sono casi più semplici come perdersi in un bosco o in un’isola deserta in cui la cosa potrebbe risultare utile. In fondo accendere il fuoco è una delle azioni base della sopravvivenza.

La foto che vedete rappresenta il dispositivo che secondo il filmato sarebbe in grado di generare l’energia necessaria a portare all’incandescenza un pezzetto di spugna-lana metallica (di ferro o acciaio) e dunque innescare la combustione di legno o altro materiale; una guardata ai seguenti (e veritieri filmati) è forse più chiara;

fuoco acceso con batteria da 9V:

https://www.youtube.com/watch?v=snjocUdBs30

fuoco acceso con 2 batterie da 1.5V in serie:

https://www.youtube.com/watch?v=htfBaJME4m4

Il filmato de La Stampa è simile, solo che si usa come sorgente non una batteria commerciale da 9V o due da 1.5 in serie, ma un limone modificato come in figura; anche nel filmato del limone la cosa sembra funzionare, ma ragionevolmente si tratta di un videomontaggio e vedremo perchè.

Nei due filmati citati prima si fa partire l’incendio di materiale secco usando come innesco la lana di ferro e una batteria messa in corto su di essa.

La cosa è credibile almeno come ordine di grandezza; cerchiamo di stimare quanta energia e quanta potenza serve allo scopo.

Si tratta di portare al calore rosso almeno qualche decina diciamo 100mg di ferro partendo da temperatura ambiente per effetto Joule; l’evento si verifica quasi istantaneamente, segno che potremmo trascurare le perdite per raffreddamento.

Il calore specifico del ferro è poco meno di 0.5 J/grammo; dobbiamo quindi fornire 0.05J/°C per un innalzamento di temperatura fino a circa 800°C; circa 40J in un secondo, ossia una potenza dell’ordine di 40W per un brevissimo periodo (anche in due secondi, 20W).

Le caratteristiche delle batterie commerciali da 9V alcaline sono una capacità di 0.5Ah (1800 coulomb, ossia 1800/96485= 0.02Faraday circa), ed una energia di 16200J (9×0.5×3600); se messa in corto circuito una batteria del genere potrebbe fornire la corrente richiesta teoricamente per oltre 400 secondi (16200/40); ma quando scaricate a questa velocità la reazione elettrochimica le cose non sono lineari, c’è tanta dissipazione. Dai dati di letteratura tuttavia non è banale avere questo tipo di informazioni che sono più simili a quelle di sicurezza, legate al rischio di incendio da batteria; inoltre una batteria sollecitata in questo modo si surriscalda e può dare luogo anche ad una esplosione.

Se trascuriamo l’inevitabile abbassamento del voltaggio durante una scarica di questo tipo, se stimiamo in un solo secondo il tempo di lavoro possiamo facilmente concludere che per ottenere 40W abbiamo bisogno nei due casi di 4-5A nel primo caso e di oltre 13A nel secondo.

Dati sperimentali si possono trarre da siti di appassionati come questo: http://physics.stackexchange.com/questions/30594/short-circuit-an-alkaline-battery

Da questo sito si ricava sperimentalmente, senza alcun tentativo di giustificazione teorica (trattandosi di un fenomeno complesso) che una singola AA alcalina in corto circuito o meglio con una resistenza applicata molto bassa, può arrivare a quasi 10A; mettendone due in serie (teoricamente il voltaggio aumenta senza variazione della corrente) possiamo dunque arrivare molto vicino al valore richiesto (basterebbe considerare 2 secondi il tempo necessario di contatto); nel caso della 9V alcalina il requisito è certo; dunque i due video sono credibilissimo quello della batteria a 9V, un pò meno l’altro ma la cosa almeno teoricamente può funzionare in entrambi i casi.

ATTENZIONE: Ovvio che stiamo parlando di dati molto approssimati perchè in effetti un corto circuito effettivo implicherebbe quasi l’azzeramento della differenza di potenziale, e dunque una corrente ancora maggiore necessaria per giustificare la potenza termica dissipata; ci sono da considerare il ruolo della resistenza interna della batteria e quello delle resistenze di contatto. Comunque, anche applicando l’espressione potenza=I2R alla dissipazione termica, un filo di ferro da 1mm2 di sezione e lungo 1cm ha una resistenza a t ambiente dell’ordine di 1 milliohm (mΩ), ma a 800°C (la resistività del ferro a 25°C è 10-7Ωm, ma il suo coefficiente termico è 0.00651/°C) più alta che a 25°C.

A 800°C dunque la R vale:

lemon2R=0.001Ωx(1+0.00651×800)=0.006Ω; servirebbero 80A in queste condizioni, ma sperimentalmente ne servono 10 volte di meno; perchè? Probabilmente la resistenza effettiva è maggiore a causa della resistenza di contatto ai capi del filo, ossia lo scadente contatto fra filo e eletttrodi della batteria dà una mano. Una resistenza di soli 0.5 Ω, farebbe scendere la corrente a meno di 9 Ampere, pienamente alla portata del sistema.

Ma cosa succede passando ad una batteria al limone? Già come funziona una batteria al limone?

La batteria al limone in effetti è un must della divulgazione chimica; ci sono perfino articoli scientifici pubblicati su varie riviste come JCE (Journal Chemical Education); una batteria al limone, o alla patata l’avrete costruita di sicuro; ma allora dove è il problema?

http://surface.syr.edu/che/2

https://www.scientificamerican.com/article/generate-electricity-with-a-lemon-battery/

http://www.autopenhosting.org/lemon/p181.pdf

Beh come al solito il diavolo è nei dettagli.

E’ una batteria molto simile a quella di Volta; due pezzi di metalllo, zinco e rame immersi in una soluzione acquosa acidula, sia pur compartimentata in cellule, dunque con una resistenza al movimento della cariche certamente maggiore che in una soluzione vera e propria e dunque risultati peggiori.

In quelle condizioni (una volta chiuso il circuito) lo zinco tende ad ossidarsi e il rame invece si comporta da semplice conduttore passivo, consentendo la riduzione dell’acido citrico presente nel limone con sviluppo di idrogeno gassoso.

Zn(s)—> Zn++(aq) +2e

2H+(aq)+2e —> H2(g)

Il voltaggio considerato è la somma dei voltaggi ottenibili dalle due semireazioni; facendo una enorme approssimazione 0.76V per lo zinco (anche se almeno in partenza la conc. di Zn++ è trascurabile) e 0 circa per l’idrogeno, in pratica a circuito aperto non supereremo gli 0.7volt. Trascuro completamente l’effetto delle concentrazioni, l’equazione di Nernst. Se volessi considerare Nernst, dovrei stimare la concentrazione di H+ legata alla presenza di acido citrico e ipotizzare ancora una volta una pressione parziale di idrogeno che almeno all’inizio è trascurabile.

Per stimare la capacità della batteria chiediamoci quanto acido citrico c’è in un limone? Attorno a 50ml di una soluzione che è al 5-7% in peso di acido citrico, dunque atttorno 2-3 grammi di acido, che corrispondono a circa 12-13mmoli (dunque circa 0.25M), dunque teoricamente 6 millimoli di idrogeno molecolare e 12.5 millimoli di elettroni; un limone corrisponde alla rispettabile quantità di 12.5 mmoli di carica elementare da estrarre, che sono oltre 1200 coulomb. Però attenzione questa non è una soluzione e basta; è una struttura biologica, compartimentata, e inoltre l’acido citrico è un acido debole (la prima Ka=7.5×10-4, dunque sempre in approssimazione una conc. di H+ di circa il 2% del totale, 5×10-3M)), di cui solo quello attorno all’elettrodo di rame immerso potrà partecipare velocemente alla reazione; dobbiamo stimare un calo di almeno 10 volte, forse di 20; 50-120 coulomb di carica disponibile. Questi stessi dati messi nell’equazione di Nernst ci consentirebbero di stimare anche il potenziale della semireazione, che diventerebbe negativo, attorno a -0.3V, in accordo con quanto detto sopra (Nota sulla reazione di riduzione).

In questo caso abbiamo varie stime della corrente tipica di questa batteria; per esempio nel lavoro di Svartling per accendere un piccolo LED rosso che necessita di circa 40mW occorrono quattro limoni in serie, dunque circa 10mW per limone; dato che il voltaggio è attorno a 0.7V abbiamo una corrente di 14mA circa; siamo su un livello molto più basso delle batterie commerciali. Comunque il valore di 0.014A e la stima di 50-120 coulomb si corrisponderebbero nel senso che quella corrente se mantenuta per un’ora corrisponde a 50 coulombs, dunque ordine di grandezza giusto.

lemon3Anche immaginando che il video la racconti giusta immaginando di porre “in serie” sei dispositivi non supereremmo i 60mW e saremmo dunque ben lontani dalla potenza necessaria, fra uno e due ordini di grandezza sotto la necessità.

Un esame del video incriminato è stato pubblicato già tempo fa con una verifica sperimentale e un giudizio negativi; lo trovate qua; aggiungiamo i nostri commenti.

https://offgridweb.com/preparation/starting-fires-with-a-lemon-real-or-hoax/

Il commento più importante da fare è sul come la batteria al limone viene proposta sul sito bufalino; confrontate l’immagine del sito con quella di un lavoro serio, pubblicato su JCE e vi rendete conto immediatamente di una differenza enorme: come sono messe “in serie” le tre batterie al limone nel lavoro di Svartling e le immaginifiche 6 nella bufala.

Se guardate con attenzione nel sito della bufala la connessione è assurda in quanto si tratta di fatto di una sola batteria al limone, costituita dai due elettrodi estremi, mentre quelli intermedi non costituiscono alcun dispositivo elettrochimico, ma sono solo pezzi di metallo connessi fra di loro; la similitudine è geometrica, non fisica; fra ciascuna delle singole coppie e quelle adiacenti non c’è alcuna separazione, condividono la stessa soluzione elettrolitica; ma le batterie non sono fatte così, esigono che ciascuna di esse, quando sono messe in serie abbia un suo proprio ambiente elettrochimico omogeneo alla batteria stessa, (e se vogliamo essere precisi a sua volta dotato di separatore fra i due elettrodi per evitare il mescolamento spontaneo e dunque la reazione in forma chimica non elettrochimica).

lemon4Per avere 6 batterie dovremmo separare il limone della bufala in sei pezzi indipendenti. Qui sotto lo schema a tre limoni.

lemon5Questo a mio parere è l’errore concettuale più forte e va al di là dei valori numerici di corrente e tensione, quel limone è una singola batteria, di più con i suoi elettrodi molto lontani e dunque che massimizzano la resistenza interna e peggiorano i risultati: il contrario di una buona batteria.

Conclusione è una bufala, non si può accendere il fuoco con una batteria al limone (e nemmeno con 6) in corto circuito.

Alcuni link utili.

http://hypertextbook.com/facts/2001/EtanMarciano.shtml

http://cr4.globalspec.com/thread/64677/Lemon-Battery-Capacity

https://prezi.com/93yh49bihq4-/factors-affecting-current-of-fruit-batteries/

http://www.odec.ca/projects/2011/duduj2/fruit-veg-battery.html

******************************************************

Nota sulla reazione di riduzione. E’ interessante notare che si sceglie di solito come reazione di riduzione per questo processo e anche per la reazione di Volta (che usò una soluzione acidula con i medesimi elettrodi) quella dell’idrogeno, con i problemi che si diceva nel testo: quali sono le effettive concentrazioni dei reagenti? Dove è l’idrogeno gassoso in equilibrio e che pressione parziale ha? Ma c’è un’altra reazione di riduzione che è anche termodinamicamente più favorita e che non soffrirebbe i medesimi problemi concettuali: la riduzione dell’ossigeno sciolto in soluzione il cui potenziale è positivo, molto più favorevole dunque di quello del protone, nelle condizioni date (che non sono di attività unitaria) dell’ordine di +0.8V. Ma come mai non si sceglie questa reazione?

O2(g) +4H+(aq)+4e –>H2O

Beh nel limone mi vien da dire per mancanza di ossigeno disciolto nel liquido interno del limone, a causa delle barriere cellulari. L’acido citrico c’è , l’ossigeno no, anche nella mela o nella patata è lo stesso come provato dal cambio di colore se li tagliate.

Ma nel caso della reazione di Volta (dunque usando una soluzione e non il limone come eletttrolita) invece la questione è molto ampia; la scelta fra i due reagenti è importante in molti altri ambiti, come nelle celle a combustibile per esempio; la risposta potrebbe essere non tanto termodinamica, ma cinetica; ossia quale sovratensione hanno rispettivamente il protone e l’ossigeno nel ridursi su un elettrodo di rame o di grafite poniamo, se costruiamo la cella con grafite e zinco, tanto il rame è inerte nel contesto dato? La risposta a queste domande è complessa; per chi fosse interessato consiglio di approfondire leggendo qualcosa sull’analisi cosiddetta di Sabatier o sul diagramma vulcano, che è lo stesso e casomai leggendo questi riferimenti:

Oxygen-tolerant proton reduction catalysis: much O2 about nothing?†

David W. Wakerley and Erwin Reisner*   Energy Environ. Sci., 2015, 8, 2283

Oppure

Electrocatalytic Oxygen Reduction Reaction Chaojie Song and Jiujun Zhu

E si tenga presente che il termine attività in questo contesto si riferisce alla catalisi e non alla termodinamica, più vicino concettualmente all’affinità di De Donder che ad altro.

Anche nella lemon battery c’è da studiare per una vita e non solo alle elementari. Si può ripetere questo esperimento dalle elementari all’università trovando sempre di cosa discutere.