Diego Tesauro
E’ possibile la vita sulla superficie di Marte? A questa domanda potrebbe rispondere il rover Rosalind Franklin della missione ExoMars (Figura 1) quando verrà lanciato. La missione, essendo una cooperazione congiunta dell’ Esa con la Roscosmos, a seguito dell’invasione dell’Ucraina, è stata bloccata dovendo partire dal cosmodromo di Baikonur lanciata dal razzo Proton. A questa missione è stata affidato l’esperimento Bottle (Brine Observation Transition To Liquid Experiment). Questo esperimento ha come obiettivo di generare acqua liquida sulla superficie di Marte mediante la deliquescenza, un processo in cui un sale igroscopico assorbendo vapore d’acqua dall’atmosfera, genera una soluzione salina. Inoltre si indagherà l’eventuale abitabilità di queste salamoie. La vita, almeno per come la conosciamo, oltre la presenza di carbonio, idrogeno, azoto, ossigeno, fosforo e zolfo, indicati con l’acronimo CHNOPS, necessita anche di altri oligoelementi e soprattutto dell’acqua liquida e di energia. Ora su Marte, l’energia potrebbe essere fornita dalla luce solare o da processi chimici. Il carbonio è disponibile nella sottile atmosfera sotto forma di biossido di carbonio, gli oligoelementi sono largamente presenti nella regolite, lo strato di polvere fine che ne ricopre la superficie.
Il fattore fortemente limitante è la presenza acqua liquida a causa della bassa pressione atmosferica (da 7 a 4 millibar contro i circa mille millibar terrestri) e delle temperature prevalentemente sotto lo zero Celsius. In queste condizioni, come ben sappiamo fin dai nostri primi studi di Chimica Fisica l’unica possibilità perché l’acqua sia liquida, in base alla legge di Raoult e dell’abbassamento crioscopico, è la presenza in soluzioni ad alta concentrazione salina. Sulla superficie del pianeta rosso sono stati rilevati negli ultimi decenni sali igroscopici in grado di formare salamoie che potrebbero rendere l’acqua liquida, fra cui i perclorati. Queste considerazioni hanno negli ultimi anni spinto la ricerca a trovare dei potenziali microorganismi in grado di vivere in queste condizioni drastiche, che chiaramente presentano varie problematiche. In primo luogo l’elevata salinità, che avrebbe quest’acqua, sarebbe in grado di modificare l’equilibrio osmotico delle cellule. Inoltre i perclorati hanno un effetto caotropico promuovendo la denaturazione delle macromolecole, il danno al DNA e lo stress ossidativo dovuto all’elevato potere ossidante del cloro nello stato di ossidazione +7.
Fra i potenziali microorganismi che potrebbero adattarsi a queste condizioni si annoverano gli archaea alofili (famiglia Halobacteriaceae). Queste specie si sono adattate alla vita agli estremi di salinità sulla Terra, pertanto potrebbero risultare dei buoni candidati per la vita anche su Marte. Molte specie resistono a livelli elevati di radiazioni UV e gamma; una specie è sopravvissuta all’esposizione al vuoto e alle radiazioni durante un volo spaziale; e c’è almeno una specie psicrotollerante (specie che crescono a 0°C, ma hanno un optimum di temperatura di 20-40 °C),. Gli archaea alofili possono sopravvivere per milioni di anni all’interno delle inclusioni di salamoia nei cristalli di sale. Molte specie hanno diverse modalità di metabolismo anaerobico e alcune possono utilizzare la luce come fonte di energia utilizzando la batteriorodopsina della pompa protonica guidata dalla luce. Inoltre la presenza dei caratteristici pigmenti carotenoidi (α-bacterioruberina e derivati) rende le Halobacteriaceae facilmente identificabili mediante spettroscopia Raman [1]. Pertanto, se presenti su Marte, tali organismi possono essere rilevati dalla strumentazione Raman pianificata per l’esplorazione EXoMars.
Per verificare la possibilità di vita sul suolo marziano per alcune specie batteriche metanogene, un gruppo di ricercatori della Technische Universität (TU) di Berlino hanno testato l’attività di tre archaea metanogenici: Methanosarcina mazei, M. barkeri e M. soligelidi (Figura 2)[2]. Le cellule microbiche sono state bagnate in un sistema di deliquescenza chiuso (CDS) costituito da una miscela di substrato essiccato Martian Regolith Analog (MRA) e sali. Il metano prodotto tramite attività metabolica è stato misurato dopo averli esposti a tre diversi substrati MRA utilizzando NaCl o NaClO4 come sale igroscopico. Gli esperimenti hanno mostrato che i M. soligelidi e i M. barkeri producevano metano rispettivamente a 4 °C e a 28 °C mentre i M. mazei non venivano riattivati metabolicamente attraverso la deliquescenza. Nessuna però delle specie produceva metano in presenza di perclorato mentre tutte le specie erano metabolicamente più attive nell’MRA contenente fillosilicati. Questi risultati sottolineano l’importanza del substrato, delle specie microbiche, del sale e della temperatura utilizzati negli esperimenti. Inoltre, quest’esperimento per la prima volta dimostra che l’acqua fornita dalla sola deliquescenza è sufficiente per reidratare gli archei metanogenici e riattivare il loro metabolismo in condizioni approssimativamente analoghe all’ambiente marziano vicino al sottosuolo
Lo stesso gruppo berlinese, più recentemente, ha condotto una prima indagine proteomica sulle risposte allo stress specifiche del perclorato del lievito alotollerante Debaryomyces hansenii e lo ha confrontato con gli adattamenti allo stress salino generalmente noti [3]. Le risposte agli stress indotti da NaCl e NaClO4 condividono molte caratteristiche metaboliche comuni, ad esempio vie di segnalazione, metabolismo energetico elevato o biosintesi degli osmoliti. I risultati di questo studio hanno rivelato risposte allo stress microbico specifiche del perclorato mai descritte prima in questo contesto. Anche se le risposte allo stress indotte in D. hansenii condividono diverse caratteristiche metaboliche, è stata identificata una glicosilazione proteica potenziata, il ripiegamento tramite il ciclo della calnexina e la biosintesi o rimodulazione della parete cellulare come misura contraria allo stress caotropico indotto dal perclorato, che generalmente destabilizza le biomacromolecole. Allo stesso tempo, i processi di traduzione mitocondriale sono sottoregolati sotto stress specifico del perclorato. Lo stress ossidativo indotto specificamente dal perclorato sembra giocare solo un ruolo minore rispetto allo stress caotropico. Una possibile spiegazione di questo fenomeno è che il perclorato è sorprendentemente stabile in soluzione a temperatura ambiente a causa del trasferimento di atomi di ossigeno che limita la velocità di riduzione. Per cui, quando si applicano questi adattamenti fisiologici, le cellule possono aumentare sostanzialmente la loro tolleranza al perclorato rispetto all’esposizione allo shock del sale. Questi risultati rendono probabile che i presunti microrganismi su Marte possano attingere a meccanismi di adattamento simili che consentano la sopravvivenza nelle salamoie del sottosuolo ricche di perclorato.
Lo scopo di questa attività di ricerca consiste quindi nel dimostrare come gli organismi estremofili potrebbero tutt’oggi essere presenti su Marte. Un qualunque esperimento da condurre sulla superficie del pianeta rosso alla ricerca della vita, è suffragato da ipotesi già validate sulla Terra. In astrobiologia infatti sono determinanti, per l’approvazione di missioni spaziali, dei risultati promettenti ottenuti in laboratorio. Questi poi potranno essere quindi verificati quando la missione Exomars potrà avere luogo, sembra comunque non prima del 2028. Inoltre la conoscenza di organismi in grado di vivere in condizioni estreme, che riteniamo improbabili, dimostrano come la vita possa svilupparsi anche in ambienti ostili ed avere eventualmente delle ricadute nello studio di processi biotecnologici.
References
1) J Jehlička, H G M Edwards, A Oren Bacterioruberin and salinixanthin carotenoids of extremely halophilic Archaea and Bacteria: a Raman spectroscopic study Spectrochim Acta A Mol Biomol Spectrosc 2013, 106, 99-103. https://doi.org/10.1016/j.saa.2012.12.081
2) D. Maus, et al. Methanogenic Archaea Can Produce Methane in Deliquescence-Driven Mars Analog Environments. Sci Rep 2020, 10, 6. https://doi.org/10.1038/s41598-019-56267-4
3) J. Heinz et al. Perchlorate-specific proteomic stress responses of Debaryomyces hansenii could enable microbial survival in Martian brines Environ Microbiol. 2022, 24, 5051–5065. https://doi.org/10.1111/1462-2920.16152

Figura 1 Il rover di ExoMars è intitolato a Rosalind Franklin i cui studi di cristallografia a raggi X. Sono stati fondamentali per risolvere la struttura del DNA e del RNA. Esplorerà il Pianeta Rosso. . Copyright: ESA/ATG medialab


Figura 2 Methanosarcina barkeri (sopra) e Methanosarcina soligelidi (sotto). Questi ceppi appartengono agli euryarchaeotearchaea che producono metano usando tutti I pathways metabolici per la metanogenesi