Perle e ossa.

Rinaldo Cervellati.

Nell’ultimo numero di C&EN newsletter (on line, 2/8/2017), Melissae Fellet informa che un team di ricercatori scozzesi ha chiarito il meccanismo attraverso cui la madreperla favorisce la crescita delle ossa. L’articolo, fra gli accettati per la pubblicazione su ACS Nano (DOI: 10.1021/acsnano.7b01044), si intitola Nacre Topography Produces Higher Crystallinity in Bone than Chemically Induced Osteogenesis, è firmato da un gruppo di ricercatori dell’Università di Glasgow, coordinati dai Prof. Matthew John Dalby (UG) & Maggie Cusack (University of Stirling).

 

Mattew John Dalby                               Maggie Cusack

La scoperta di impianti dentali interamente integrati a base di conchiglie nei crani di antichi Maya ha avviato una serie di ricerche che hanno mostrato come piccoli pezzi di madreperla, il rivestimento iridescente delle conchiglie delle ostriche[1] e di altri molluschi, inducono la formazione di ossa in sia in colture cellulari sia in modelli animali come pure nella ricostruzione della mascella umana. Restava però oscuro il meccanismo di azione della madreperla. Infatti la madreperla è un minerale a base di carbonato di calcio con una struttura diversa rispetto al minerale principale delle ossa, ossia il fosfato di calcio. Studi hanno dimostrato che polvere di madreperla induce le cellule staminali a produrre fosfato di calcio. Tuttavia, le cellule staminali rispondono anche a segnali fisici come urti nanoscopici e nanocreste sulle superfici del materiale. Per separare l’effetto della composizione chimica della madreperla dalla sua struttura superficiale, il Gruppo guidato da Cusack e Dalby ha deciso di riprodurre il modello nanoscopico di madreperla su un materiale diverso. Innanzitutto, i ricercatori hanno ricoperto l’interno di una conchiglia di ostrica con un polimero di silicone, spalmandolo uniformemente, quindi lo hanno rimosso.

Stampo siliconico in conchiglia d’ostrica

Lo stampo polimerico risultante è stato poi ricoperto con policaprolattone fuso, un polimero biocompatibile. Dopo la solidificazione e rimozione dello stampo siliconico, la squadra ha utilizzato la microscopia elettronica tridimensionale a scansione per controllare di aver ricostruito la struttura a superficie nano scabrosa della madreperla sulla superficie del polimero.

Quindi, i ricercatori hanno coltivato le cellule staminali mesenchimali umane sulla replica polimerica. Dopo cinque settimane, le cellule hanno aumentato l’espressione di geni legati allo sviluppo osseo rispetto alle cellule coltivate su una superficie liscia dello stesso polimero, indicando che la stimolazione della crescita ossea è dovuta alla sola struttura della madreperla.

Per studiare l’effetto di diversi stimoli fisici e chimici sull’osso in crescita, la squadra ha stimolato la coltura delle cellule staminali sulla madreperla naturale di un’ostrica, sulla replica polimerica, e su una matrice strutturata in polimetilmetacrilato noto per aiutare la crescita ossea. Inoltre, sono stati effettuati esperimenti con cellule utilizzando due diversi metodi di coltura delle cellule stesse. L’osso si forma in tutte le condizioni, ma risposte metaboliche diverse hanno indicato che l’osso prodotto potrebbe avere proprietà diverse nei diversi casi.

La spettroscopia Raman ha rivelato che le cellule coltivate sulla replica polimerica della madreperla hanno dato luogo all’osso più cristallino fra tutte le condizioni sperimentate.

La cristallinità è solo una proprietà che può influenzare la resistenza ossea, dice Cusack, e fra di esse non vi è purtroppo una relazione semplice. Sapendo che la struttura fisica della madreperla influenza la cristallinità, i ricercatori potrebbero variare le asperità del modello polimerico e studiare i cambiamenti delle proprietà ossee, insiste Cusack. Essere in grado di modificare questa proprietà in vitro potrebbe permettere ai ricercatori di ottimizzare le caratteristiche complessive dell’osso da impiantare ai fini di specifiche applicazioni.

Un problema nell’interpretazione di questi primi esperimenti potrebbe provenire dalla struttura mutevole della madreperla, osserva critico Daniel Chappard, un ricercatore in rigenerazione ossea e biomateriali all’Università di Angers (Francia). Una sua ricerca dimostra che la madreperla naturale altera la sua struttura cristallina in colture cellulari cresciute in media diversi. Quindi, il modello di superficie polimerica potrebbe non essere lo stesso che le cellule sperimentano quando vengono coltivate sulla superficie del materiale naturale.

Tradotto e adattato da C&EN newsletter, 2017, 95(32), 7.

 

 

 

[1] Per esattezza ostrica Pinctada maxima.