La pubblicità di ENI.2. Quanto è verde la chimica verde?

In evidenza

Claudio Della Volpe

(la prima parte di questo post è pubblicata qui)

Da quando Anastas e Warner pubblicarono nel 1998 il loro famoso libro Green Chemistry Theory and Practice* è passata parecchia acqua sotto i ponti e la definizione e l’importanza della “chimica verde” si sono estese; i 12 principi originali sono i seguenti 

Ma di fatto la complessità del problema ha reso necessario un approccio polifattoriale per definire e verificare quanto è verde la chimica che è espresso nello schema qui sotto.

Nella storia recente il verde è stato un colore abusato; si pensi alla cosiddetta rivoluzione verde, un approccio ai temi della produzione agricola che, attraverso l’impiego di varietà vegetali geneticamente selezionate, fertilizzanti, fitofarmaci, acqua e altri investimenti di capitale in forma di mezzi tecnici, ha consentito un incremento significativo delle produzioni agricole in gran parte del mondo tra il 1940 e il 1970 (il nome di riferimento è Norman Borlaug, premio Nobel per la pace nel 1970). Tuttavia tale incremento ha costituito la premessa di una serie di grandi problemi; da una parte non ha risolto il problema della fame che attanaglia ancora alcune parti del pianeta, dall’altra la sua applicazione ha sconvolto i cicli del carbonio, dell’azoto e del fosforo, attraverso l’incremento della produzione di metano, l’introduzione di nitrati sintetizzati a partire da ammoniaca e l’incremento della estrazione di fosfati; dunque la soluzione di una parte del problema della fame ha prodotto altre rilevanti tensioni fra noi e il nostro ambiente.

Sperando che questo non sia il caso della chimica verde approfondiamo un pò come la vede ENI.

La bioraffineria produce biocarburanti da oli vegetali e, a breve, da materie prime non convenzionali quali oli di frittura, grassi animali e scarti della produzione alimentare. Quello realizzato nelle nostre bioraffinerie è un biocarburante di altissima qualità la cui produzione nel 2020 raggiungerà il milione di tonnellate.”

Al momento ENI si dedica alla produzione di “biocarburanti” a partire da olio di palma recentemente demonizzato per usi alimentari, ma attenzione:

Nella Bioraffineria di Venezia utilizziamo olio di palma certificato, cioè frutto di coltivazioni esistenti da molti anni, quindi sicuramente non causa di deforestazione – ha spiegato Giacomo Rispoli, “l’inventore” di questa tecnologia, ora Supply manager di Eni – e inoltre verifichiamo con audit locali, in Malesia e Indonesia. Ma la nostra tecnologia Ecofining® è flessibile, quindi potrà trasformare in green diesel l’olio ricavato dalle microalghe che già stiamo testando a Gela, oppure gli olii waste, oppure ancora i grassi animali e gli olii microbici da biomasse»

Il consumo italiano di carburanti ha piccato nei primi anni 2000 sui 37-38 Mton ed attualmente viaggia su circa 30; dunque la prospettiva ENI è di incrementare la quota “bio” di questi carburanti, in particolare diesel, adesso usando olio di palma e in futuro arrivare ad un qualche percento del totale (1/30) usando microalghe, scarti vegetali e simili.

Ringrazio Terenzio Longobardi per questo grafico

Ma quanto sono verdi queste strategie?

Anche con la migliore tecnica agricola non si superano 1-1.5 toe/ettaro come energia netta. Dunque stiamo parlando di 1-2 milioni di ettari assoggettati per arrivare ai limitati fini di ENI, ossia fra i 10 e i 20.000 chilometri quadri; anche questo obiettivo tutto sommato di nicchia richiederebbe un decimo di tutta la superficie italiana usata per agricoltura e se vi fate un conto immediato anche se tutta la superficie agricola fosse convertita ad uso carburante non basterebbe ai nostri bisogni e nemmeno tutta la superficie dello stato basterebbe.

Insomma una tecnica del genere ci obbliga a rimanere importatori di energia e farebbe concorrenza comunque in certo grado alla produzione agricola.

Ci sono state altre esperienze perchè questa strategia (produrre la quota “bio” dei carburanti) è stata scelta da altre aziende italiane ma con scarso successo (una fra tutte Mossi& Ghisolfi, Crescentino, biocarburanti dalla canna selvatica Arundo Donax, un argomento che ho analizzato in dettaglio su C&I e che si rivela un investimento fallimentare). Crescentino è in profonda crisi e le prospettive occupazionali sono pessime. Si veda un mio articolo a riguardo https://www.soc.chim.it/system/files/private/chimind/pdf/2016_5_62_ca.pdf

Non è che non si possa fare chimicamente; si può fare, ma il ritorno energetico è ridicolmente basso e le difficoltà pratiche notevoli. Anche i biocarburanti di seconda generazione mostrano dei limiti; in due parole a parte la bassa resa superficiale e la sia pur ridotta concorrenza con l’alimentare rispetto ai biocarburanti di prima generazione, il problema è che se sottraete alla terra i residui vegetali delle piante dovete poi restituirglieli sotto forma di concimi sintetici e dunque il bilancio energetico complessivo di questa strategia complessiva in realtà non può essere granchè positivo.

Ma l’idea che sta dietro alla bioraffineria è molto più ampia e per certi aspetti sconvolgente; leggete con me un recente libro dedicato al tema delle bioraffinerie:

The present use of biomass is mainly limited to food and feed and a much smaller but still increasing part is applied for production of energy and fuels. The amount of biomass that is used for human consumption (food and non-food) represents only 13% of the annual global biomass production by photosynthesis that accounts for 155,000 million ton/year (see Section 1.2.2). This indicates a biomass potential to contribute significantly also to industrial sectors, including energy and chemicals (Marquardt et al., 2012).

(EFFICIENCY OF BIOMASS ENERGY An Exergy Approach to Biofuels, Power, and Biorefineries Krzysztof J. Ptasinski, Wiley 2016 cap. 17)

Dunque l’idea è: dato che sfruttiamo SOLO(sic!) un settimo circa del totale del flusso fotosintetico la bioraffineria sarebbe il modo di assoggettare una parte crescente o perfino tutta la biosfera alle necessità umane; la cosa ha un che di apocalittico e anche di spaventoso. Se tutta la biomassa venisse usata per scopi umani cosa ne sarebbe della biodiversità? E ancor più sarebbe questa prospettiva sostenibile? La biosfera è una rete integrata di relazioni non una macchina fatta di pezzi sostituibili; se assoggettiamo quelle relazioni solo ai nostri bisogni allora distruggeremo la macchina. Si potrebbe crescere nell’intercettazione del flusso fotosintetico senza alterare in modo ancora maggiore il funzionamento della biosfera( biodiversità, grandi cicli degli elementi, etc)? La mia risposta è: molto difficile se non impossibile.

Facciamo qualche riflessione su grande scala.

La società umana usa un quantitativo di energia primaria, ossia relativo alle sorgenti energetiche presenti in natura e quindi non derivanti dalla trasformazione di nessuna altra forma di energia, dell’ordine di 12-14 GTOE/anno, che al momento viene da energia fossile in percentuale dominante. La dimensione di questo consumo è tale che pone due limiti.

Il primo è che sebbene il flusso annuale di energia attraverso la biosfera sia di gran lunga maggiore di quello effettivamente usabile senza alterare in modo significativo i cicli naturali e la biosfera medesima i due diventano nondimeno “comparabili”; considerate per esempio che se è vero che il rapporto fra flusso di energia luminosa dal Sole e consumo totale primario è dell’ordine di 10.000:1 su tutto il globo, riducendosi (per motivi pratici e politici) all’area interna di un paese fortemente industrializzato come il nostro il rapporto scende a 200:1 e in paesi ancora più “concentrati” del nostro e dalle caratteristiche territoriali diverse, come l’Olanda può arrivare a solo 100:1; per cui l’incremento assoluto della quantità di energia comincia diventare significativo rispetto all’uso della biosfera. Siamo dunque non lontani da limiti insuperabili.

In secondo luogo se è concepibile trarlo da sorgenti interamente rinnovabili (solare, eolico, idro, maree, biomasse) le biomasse non potranno mai giocarvi un ruolo predominante; basti infatti pensare che la superficie atttualmente usata per scopi agricoli è stimabile in circa 40 milioni di kmq; dato che la produttività massima di specie usabili anche con le metodiche di seconda generazione equivale come detto al massimo a circa 1-1.5TOE/ettaro, se pure volessimo usare TUTTA la superficie agricola per scopi energetici e seppure questo, con sviluppi tecnologici oggi non concepibili, NON alterasse la resa agricola corrispondente, quindi se avessimo una ipotetica agricoltura OGM che producesse contemporaneamente cibo ed energia non supereremmo 4-5 GTOE anno, meno della metà delle nostre esigenze attuali.

Ovviamente si può immaginare una serie di scenari diversi usando le foreste attuali, il mare etc, (e questa è la prospettiva della “bioraffineria”) ma tutti questi scenari infrangono il limite della non ulteriore interferenza con la biosfera, la cui decadenza (ho detto giusto decadenza) misurata attraverso la riduzione della biodiversità è già manifesta e non tenendo conto che l’incremento prevedibile della numerosità umana nei prossimi 100 anni potrebbe essere dell’ordine di almeno 2-3 miliardi di altri individui con le corrispondenti richieste di cibo ed energia. Si tenga presente per esempio che attualmente la biomassa terrestre di vertebrati umani o asserviti all’uomo è il 98% del totale della biomassa di analogo livello (umani+asserviti+ selvatici)!!

In parole povere la biomassa non potrà giocare nemmeno nello scenario più favorevole se non un ruolo secondario nella nostra produzione energetica a meno di non rischiare un ulteriore impoverimento del sistema e perfino un suo danneggiamento irreversibile. Probabilmente nessuna sorgente primaria sarà assoluta o raggiungerà mai un ruolo dominante così esclusivo come gioca attualmente il fossile, ma se si può pensare ad una sorgente principe il pensiero non può che correre al solare nelle sue varie forme, accompagnato dall’eolico, dall’idrico e della maree/onde. Il nucleare attuale non è rinnovabile per nulla, avendo già superato il suo picco dell’uranio (non faccio menzione qui dei problemi di riciclo che pure non sono stati al momento risolti).

Diverso è il discorso se pensiamo ad usi NON energetici; qui le esigenze sono quantitativamente molto più ridotte, di ordini di grandezza e quindi si può pensare ad un ruolo chiave dei materiali di origine “naturale” e non fossile con limiti che dipendono dalle singole risorse (un esempio banale sono le fibre tessili naturali come canapa e lana, che oggi sono abbandonate o perfino considerate rifiuti).

Ma se le cose stanno così, perchè il nostro paese persegue una politica della chimica verde legata a visioni tipo biocarburanti? Perchè non sottolinea le biomasse come sorgente di materiali prima che di energia? Perchè le nostre major chimiche invece di investire nella produzione di materiali per il solare dei vari tipi (silicio, film sottile, o perfino perovskite) puntano alle biomasse; per esemplificare perchè si cerca a tutti i costi di mantenere Crescentino (Mossi e Ghisolfi) o Venezia-Marghera (ENI) ma si abbandonano di fatto Catania o Merano(SGS e MEMC)? Perchè non si supportano quei coraggiosi tentativi di startup sui temi dell’accumulo (come questo l’unico produtore italiano di celle al litio ione)?

*Anastas, Paul T., and Warner, John C. (1998). Green Chemistry Theory and Practice. New York: Oxford University Press

 

Un tema emergente: depuratori come bioraffinerie.

Mauro Icardi

Con una certa ricorrente periodicità si leggono sui giornali notizie che parlano in maniera molto generica del potenziale energetico della FORSU, ovverosia della frazione umida dei rifiuti solidi urbani, e più in generale dei reflui fognari. Ho seguito, a livello di esperienze in scala di laboratorio questo tipo di sperimentazioni, e posso dire che funzionano. Ma occorre fare immediatamente alcune considerazioni e sgombrare il campo da possibili obiezioni o fraintendimenti. Questo tipo di tecnica, cioè la codigestione di frazione umida dei rifiuti, o di diverse tipologie di residui di origine organica, di sottoprodotti di lavorazioni agroindustriali insieme ai fanghi originati dalla depurazione a fanghi attivi tradizionale, non è da confondersi con la produzione di biogas da biomasse eventualmente coltivate o importate esclusivamente a questo scopo.

Si tratta di una possibilità diversa. La digestione anaerobica è circondata troppo spesso dalla solita confusione che si fa quando si parla di questioni tecniche. I fanghi di risulta dei depuratori vengono mandati al trattamento di digestione anaerobica sostanzialmente per ridurne il potenziale di putrescibilità e per essere parzialmente igienizzati. La riduzione della percentuale di sostanza organica permette successivamente un trattamento più agevole dei fanghi destinati ad essere resi palabili e smaltibili con un trattamento di disidratazione meccanica.

La possibilità di trattare insieme ai fanghi la frazione umida dei rifiuti solidi aumenta considerevolmente la produzione di metano. Il principio della codigestione si adatta al trattamento anaerobico della FORSU; infatti, la combinazione di biomasse eterogenee permette di ottenere una matrice da digerire che risponda meglio alle caratteristiche chimico-fisiche desiderate. Ad esempio, una corretta ed attenta miscelazione di matrici differenti può aiutare a risolvere problemi relativi al pH e al corretto rapporto acidi volatili/alcalinità.

La codigestione è pratica standard in diversi paesi europei, quali Francia e Norvegia.

Le matrici attualmente più utilizzate nella codigestione sono gli effluenti zootecnici, gli scarti organici agroindustriali e le colture energetiche. Gli scarti organici da utilizzare come co-substrati provengono dalle più svariate fonti e possiedono quindi forti differenze nella composizione chimica e nella biodegradibiltà. Alcune sostanze (quali percolati, acque reflue, fanghi, oli, grassi e siero) sono facilmente degradabili mediante digestione anaerobica senza richiedere particolari pretrattamenti, mentre altre (scarti di macellazione e altre biomasse ad elevato tenore proteico) necessitano di essere fortemente diluite con il substrato base, in quanto possono formare metaboliti inibitori del processo (ad esempio l’ammoniaca). Una vasta gamma di matrici richiede step vari di pretrattamento quali, ad esempio, il rifiuto organico da raccolta differenziata, gli alimenti avanzati e/o scaduti, gli scarti mercatali, i residui agricoli e gli scarti di macellazione. La codigestione, se gestita correttamente, è una buona pratica per migliorare la gestione e le rese di un impianto di digestione anaerobica.

Le modifiche impiantistiche dei digestori esistenti potrebbero riguardare la realizzazione di agitatori interni al comparto di digestione, e nel caso del trattamento di frazioni organiche solide di trituratori e coclee per il caricamento dei reflui nel comparto di digestione.

Oltre a problemi di tipo impiantistico e di gestione di processo occorre anche citare problemi di carattere autorizzativo e burocratico. Che permettano di agevolare l’eventuale uso di residui che da rifiuti si trasformino in materie prime secondarie.

Un ultima considerazione. Mediamente la produzione specifica di biogas dai soli fanghi di depurazione desunta da dati di letteratura e sperimentali è di circa sui 10 m3/t. Quella della FORSU raggiunge i 140 m3/t.

La sinergia è quindi ampiamente auspicabile.

Questo filmato mostra una prova di infiammabilità eseguita insieme a studenti dell’Università di Varese durante una delle sperimentazioni lab scale di codigestione.

Una piccola dedica ed un ricordo di anni proficui sia professionalmente che umanamente. Una piccola dedica ai ragazzi che ho seguito con affetto e passione.

Fatta questa lunga premessa, in questi giorni ho notato che la pubblicità di una nota industria petrolifera parla di sperimentazioni volte ad ottenere “tramite lo studio della decomposizione anaerobica dei primi organismi viventi” lo sviluppo di un processo che permette “di ottenere un bio olio da impiegare direttamente come combustibile o da inviare successivamente ad un secondo stadio di raffinazione per ottenere biocarburante da usare nelle nostre automobili”.

Questa affermazione mi lascia sinceramente perplesso. Il tema dell’ottenimento di petrolio dai rifiuti ricorda la vicenda ormai nota della Petrol Dragon.

E’ noto che per convertire sostanza organica in idrocarburi si debba lavorare ad alte pressioni e temperature. Uno studio sperimentale per convertire alghe in biocarburante identifica i parametri di processo in una temperatura di 350°C e pressione di 3000 psi.

Questo il link dello studio.

http://www.smithsonianmag.com/innovation/scientists-turn-algae-into-crude-oil-in-less-than-an-hour-180948282/?no-ist

Questo processo convertirebbe dal 50 al 70% della mistura di acqua e alghe in “una specie di petrolio greggio in meno di un’ora” .

Da quel che si deduce fino ad ora lo studio è fermo alla fase di realizzazione in scala impianto pilota.

Allo stesso modo un processo che volesse ottenere combustibili liquidi utilizzando come materia prima la FORSU e che dovrebbe subire lo stesso tipo di trattamento, da adito a diverse perplessità, vista l’eterogeneità del materiale di partenza.

La FORSU che sappiamo essere facilmente gassificabile dovrebbe produrre biogas che si dovrebbe convertire in gas di sintesi, se la quantità di metano fosse sufficientemente elevata, e successivamente tramite reazioni quali quella di Fischer Trops in carburante sintetico. Probabilmente troppi passaggi. E visto il prezzo ancora relativamente basso del petrolio probabilmente anche antieconomico.