Elementi della tavola periodica. Cesio, Cs (seconda parte).

In evidenza

Rinaldo Cervellati

 

Applicazioni

Industria estrattiva

Il principale uso di cesio non radioattivo è nel formiato di cesio come fluido di perforazione per l’industria petrolifera estrattiva. Soluzioni acquose di formiato di cesio (HCOO − Cs), prodotte facendo reagire idrossido di cesio con acido formico, furono sviluppate a metà degli anni ’90 per essere utilizzate come fluidi di perforazione e completamento di pozzi petroliferi. L’alta densità della salamoia di formiato di cesio (fino a 2,3 g/cm3), unita alla natura relativamente benigna della maggior parte dei composti di cesio, riduce la necessità di solidi sospesi tossici ad alta densità nella perforazione; un vantaggio tecnologico e ingegneristico. A differenza dei componenti di molti altri liquidi pesanti, il formiato di cesio ha un minor impatto ambientale. Inoltre, è biodegradabile e può essere riciclato, il che è importante in considerazione del suo costo elevato.

Orologi atomici

Gli orologi atomici a base di cesio utilizzano le transizioni elettromagnetiche nella struttura iperfine degli atomi di cesio-133 come punto di riferimento. Il primo orologio accurato al cesio fu costruito da Louis Essen nel 1955 presso il National Physical Laboratory nel Regno Unito.

FOCS-1, un orologio atomico a fontana di cesio freddo continuo in Svizzera, ha iniziato a funzionare nel 2004 con un’incertezza di un secondo in 30 milioni di anni (figura 7)

Figura 7. FOCS-1, orologio atomico a fontana di cesio freddo continuo in Svizzera

Gli orologi al cesio sono migliorati nell’ultimo mezzo secolo e sono considerati “la realizzazione più accurata di un misuratore del tempo che l’umanità abbia mai raggiunto”. Questi orologi misurano la frequenza con un errore da 2 a 3 parti su 1014, che corrisponde a una precisione di 2 nanosecondi al giorno, o un secondo in 1,4 milioni di anni. Le ultime versioni sono più accurate di 1 parte su 1015, circa 1 secondo in 20 milioni di anni. Gli orologi al cesio regolano i tempi delle reti di telefoni cellulari e di Internet.

Unità di misura nel SI

Il secondo, simbolo s, è l’unità di tempo nel Sistema Internazionale (SI). È definito prendendo il valore numerico fisso della frequenza di cesio ΔνCs, la frequenza di transizione iperfine allo stato fondamentale imperturbato dell’atomo di cesio-133, a 9192631770 Hz (cioè s– 1).

Industria elettrica ed elettronica

I generatori termoionici di vapori di cesio sono dispositivi a bassa potenza che convertono l’energia termica in energia elettrica. Nel convertitore tubo a vuoto a due elettrodi, il cesio neutralizza la carica spaziale vicino al catodo e migliora il flusso di corrente.

Il cesio è anche importante per le sue proprietà fotoemissive, poiché converte la luce in flusso di elettroni. Viene utilizzato nelle cellule fotoelettriche perché i catodi a base di cesio, come il composto intermetallico K2CsSb, hanno una bassa tensione di soglia per l’emissione di elettroni.  La gamma di dispositivi fotoemissivi che utilizzano il cesio include dispositivi di riconoscimento ottico dei caratteri, tubi fotomoltiplicatori e tubi per videocamere. Tuttavia, germanio, rubidio, selenio, silicio, tellurio e molti altri elementi possono essere sostituiti al cesio nei materiali fotosensibili.

I cristalli di cesio ioduro (CsI), bromuro (CsBr) e fluoruro (CsF) sono impiegati per gli scintillatori nei contatori a scintillazione ampiamente utilizzati nell’esplorazione dei minerali e nella ricerca sulla fisica delle particelle per rilevare la radiazione di raggi gamma e X. Essendo un elemento pesante, il cesio fornisce un buon potere frenante con una migliore rilevazione.

I vapori di cesio sono utilizzati in molti comuni magnetometri.

L’elemento è utilizzato come standard interno in spettrofotometria. Altri usi del metallo includono laser ad alta energia e lampade a bagliore di vapore e raddrizzatori di vapore.

Usi chimici e medici

Relativamente poche applicazioni chimiche utilizzano il cesio. Il doping con composti di cesio aumenta l’efficacia di diversi catalizzatori per la sintesi chimica, come acido acrilico, antrachinone, ossido di etilene, metanolo, anidride ftalica, stirene, monomeri di metil metacrilato e varie olefine. Viene anche utilizzato nella conversione catalitica di anidride solforosa in triossido di zolfo nella produzione di acido solforico.

Il fluoruro di cesio ha un uso di nicchia nella chimica organica di base e come fonte anidra di ioni fluoruro. I sali di cesio a volte sostituiscono i sali di potassio o sodio nella sintesi organica, ad esempio nella ciclizzazione, esterificazione e polimerizzazione.

L’alta densità dello ione cesio rende le soluzioni di cloruro di cesio, solfato di cesio e trifluoroacetato di cesio (Cs(O2CCF3)) utili in biologia molecolare per l’ultracentrifugazione a gradiente di densità. Questa tecnologia viene utilizzata principalmente nell’isolamento di particelle virali, frazioni subcellulari e acidi nucleici da campioni biologici.

Il cesio è stato utilizzato anche nella dosimetria delle radiazioni termoluminescenti (TLD): quando esposto alle radiazioni, acquisisce difetti cristallini che, se riscaldati, regrediscono con un’emissione di luce proporzionata alla dose ricevuta. Pertanto, la misurazione dell’impulso luminoso con un tubo fotomoltiplicatore può consentire di quantificare la dose di radiazione accumulata.

Applicazioni nucleari e isotopiche

Il cesio-137 è un radioisotopo comunemente usato come emettitore gamma nelle applicazioni industriali. I suoi vantaggi includono un’emivita di circa 30 anni, la sua disponibilità dal ciclo del combustibile nucleare e avere 137Ba come prodotto finale stabile. L’elevata solubilità in acqua è uno svantaggio che lo rende incompatibile con gli irradiatori per piscine di grandi dimensioni per alimenti e forniture mediche. È stato utilizzato in agricoltura, nella cura del cancro e nella sterilizzazione di alimenti, fanghi di depurazione e attrezzature chirurgiche. Il cesio-137 è stato impiegato in una varietà di strumenti di misura industriali, inclusi misuratori di umidità, densità, livellamento e spessore.

Il cesio-137 è stato utilizzato in studi idrologici analoghi a quelli con il trizio. Come prodotto figlia dei test delle bombe a fissione dagli anni ’50 alla metà degli anni ’80, il cesio-137 è stato rilasciato nell’atmosfera, dove è stato prontamente assorbito dall’umidità. La variazione nota di anno in anno in quel periodo consente la correlazione con gli strati del suolo e dei sedimenti.

Il cesio-134, e in misura minore il cesio-135, sono stati usati anche in idrologia per misurare la produzione di cesio dall’industria nucleare. Sebbene siano meno diffusi del cesio-133 o del cesio-137, questi isotopi sono prodotti esclusivamente da fonti antropiche.

Altri usi

Una delle applicazioni industriali più recenti del cesio è quella relativa alla tempra chimica di vetrate destinate a resistere agli incendi: volendo evitare l’impiego di boro, questa rappresenta l’unica alternativa attualmente praticabile.

Gli elettroni irradiati da un cannone elettronico colpiscono e ionizzano atomi di carburante neutri; in una camera circondata da magneti, gli ioni positivi sono diretti verso una griglia negativa che li accelera. La forza del motore viene creata espellendo gli ioni dalla parte posteriore ad alta velocità. All’uscita, gli ioni positivi vengono neutralizzati da un altro cannone elettronico, assicurando che né la nave spaziale né lo scarico siano caricati elettricamente e non siano attratti.

Cesio e mercurio erano usati come propellenti nei primi motori ionici progettati per la propulsione di veicoli spaziali in missioni interplanetarie o extraplanetarie molto lunghe. Ma la corrosione da cesio sui componenti dei veicoli spaziali ha spinto lo sviluppo verso i propellenti a gas inerti, come lo xeno, che sono più facili da gestire nei test a terra e causano meno danni potenziali al veicolo spaziale.  Tuttavia, sono stati costruiti propulsori elettrici a emissione di campo che accelerano gli ioni di metallo liquido come il cesio.

I carbonati di cesio e di rubidio sono stati aggiunti al vetro perché riducono la conduttività elettrica e migliorano la stabilità e la durata delle fibre ottiche e dei dispositivi per la visione notturna. Il fluoruro di cesio o il fluoruro di cesio e alluminio sono usati nelle formulazioni per la brasatura di leghe di alluminio che contengono magnesio.

I sali di cesio sono stati valutati come reagenti antishock in seguito alla somministrazione di farmaci arsenicali. A causa del loro effetto sui ritmi cardiaci, tuttavia, è meno probabile che siano utilizzati rispetto ai sali di potassio o di rubidio. Sono stati anche usati per trattare l’epilessia.

Effetti biologici e precauzioni

I composti di cesio non radioattivo sono solo leggermente tossici e il cesio non radioattivo non è un rischio ambientale significativo. Poiché i processi biochimici possono confondere e sostituire il cesio con il potassio, l’eccesso di cesio può portare a ipopotassiemia, aritmia e arresto cardiaco acuto. Ma queste quantità non si trovano normalmente nelle fonti naturali.

La dose letale mediana (LD50) per il cloruro di cesio nei topi è di 2,3 g per chilogrammo, che è paragonabile ai valori di LD50 di cloruro di potassio e cloruro di sodio.

Il cesio metallico è uno degli elementi più reattivi, altamente piroforico: la temperatura di autoaccensione del cesio è -116 ° C e si accende in modo esplosivo all’aria per formare idrossido di cesio e vari ossidi. L’idrossido di cesio corrode rapidamente il vetro. è altamente esplosivo in presenza di acqua: l’idrogeno gassoso prodotto da questa reazione viene riscaldato dall’energia termica rilasciata contemporaneamente, provocando l’accensione e una violenta esplosione.

Gli isotopi 134 e 137 sono presenti nella biosfera in piccole quantità dalle attività umane, che differiscono secondo la posizione geografica. Il radiocesio segue il potassio e tende ad accumularsi nei tessuti vegetali, compresi frutta e verdura. Le piante variano ampiamente nell’assorbimento del cesio, a volte dimostrando una grande resistenza a esso. È anche ben documentato che i funghi provenienti da foreste contaminate accumulano radiocesio (cesio-137) negli sporocarpi fungini. L’accumulo di cesio-137 nei laghi è stato una grande preoccupazione dopo il disastro di Chernobyl. Esperimenti con cani hanno dimostrato che una singola dose di 3,8 millicurie (4,1 μg di cesio-137) per chilogrammo è letale entro tre settimane; quantità minori possono causare infertilità e cancro. L’Agenzia internazionale per l’energia atomica e altre fonti hanno avvertito che i materiali radioattivi, come il cesio-137, potrebbero essere utilizzati in dispositivi di dispersione radiologica, o “bombe sporche”.

Riciclaggio

Come ricordato nel post sul rubidio, nel 2014 un gruppo di ricerca giapponese ha brevettato un metodo di riciclaggio di rubidio e cesio da scorie di scarto di estrazione del litio dai suoi minerali, al termine del processo si ottiene carbonato di cesio al 99,9% di purezza [1].

Ciclo biogeochimico

Dopo il disastro di Chernobyl (1986) e l’incidente di Fukushima (2011), che hanno sparso nell’atmosfera grandi quantità di materiale radioattivo, in particolare il cesio-137, le ricerche sul ciclo biogeochimico di questo isotopo si sono moltiplicate. Qui ne riportiamo due, la prima relativa al disastro di Chernobyl, la seconda anche riguardo all’incidente di Fukushima.

La prima, dovuta a ricercatori russi dell’Università Statale di Mosca e del Consiglio delle Ricerche del Saskatchewan (Canada), integra i risultati del monitoraggio lungo 25 anni del ciclo biogeochimico degli isotopi 137C e 90Sr negli ecosistemi forestali contaminati della Russia e dell’Ucraina [2]. La rete di monitoraggio a lungo termine era stata subito istituita con una serie di siti chiave situati da 5 a oltre 500 km dalla centrale nucleare di Chernobyl. Sono stati monitorati i seguenti componenti: biotici (alberi, erba e arbusti, muschi e funghi), suoli (foresta e minerali), acqua del suolo e di caduta. Attualmente, 25 anni dopo il fallout di Chernobyl, l’assorbimento di 137Cs e 90Sr  da parte della vegetazione supera la loro infiltrazione attraverso il suolo, ovvero il ciclo biogeochimico svolge attualmente un ruolo importante nell’impedire l’infiltrazione di radionuclidi attraverso il suolo fino alle falde acquifere. In ambienti umidi, i biotici sono un fattore trainante del ciclo dei radionuclidi, mentre in quelli aridi ed eluviali il complesso di assorbimento del suolo gioca un ruolo più importante. L’effetto del tipo di ambiente si manifesta per 137C, ma meno importante per 90Sr. Il 137Cs è attivamente assorbito dal complesso dei funghi, mentre 90Sr è accumulato principalmente nella vegetazione arborea.

I flussi biogeochimici di 137C e 39K in alcuni ecosistemi sono ancora diversi, anche 25 anni dopo il disastro.

La seconda ricerca, di un gruppo internazionale, riguarda la radiochimica del 137Cs, il suo trasporto e la sua possibile bonifica dagli ambienti acquatici [3]. Il 137Cs è un indicatore importante dell’inquinamento radioattivo in ambienti acquatici. Il trasporto e il destino del 137Cs antropogenico sono correlati alle proprietà chimiche del Cs ionico (Cs+), che generalmente impone un alto grado di mobilità e biodisponibilità di questo radionuclide. Il trasporto di 137C e la sua suddivisione tra le componenti abiotiche e biotiche degli ecosistemi acquatici sono processi complessi che sono notevolmente influenzati da un numero di fattori come la composizione mineralogica dei solidi sospesi,  dei sedimenti di fondo e la caratteristica geochimica dell’acqua. Questi fattori influenzano la cinetica di adsorbimento e desadsorbimento di 137Cs e il trasporto del suo particolato. Tuttavia, l’evidenza suggerisce che l’accumulo biologico diretto di 137Cs nell’ambiente acquatico è dovuto principalmente ai microrganismi e alle piante acquatiche.

Figura 8. Ciclo biogeochimico di 137Cs in sistemi acquatici [3]

Le prove in questo lavoro indicano che137Cs viene continuamente rimesso in circolo nei sistemi biologici per molti anni dopo la contaminazione. Vengono inoltre discussi i possibili metodi di bonifica per i sistemi acquatici contaminati.

Opere consultate

Handbook of Chemistry and Physics 85th Ed. pag. 4-8

https://en.wikipedia.org/wiki/Caesium

Bibliografia

[1] Method for recycling rubidium and caesium from waste lithium extraction slag.

https://patents.google.com/patent/CN103667727A/en

[2] A. Shcheglov, O. Tsvetnova, A. Klyashtorin, Biogeochemical cycles of Chernobyl-born radionuclides in thecontaminated forest ecosystems. Long-term dynamics of the migration processes., Journal of Geochemical Exploration, 2014, 144, 260-266.

[3] M. Aqeel Ashraf et al., Cesium-137: Radio-Chemistry, Fate, and Transport, Remediation, and Future Concerns., Critical Reviews in Environmental Science and Technology, 2014, 44, 1740–1793.

Elementi della tavola periodica. Cesio, Cs.(parte prima)

In evidenza

Rinaldo Cervellati

Il cesio (inglese caesium o cesium), simbolo Cs, è l’elemento n. 55 della Tavola Periodica, posto al 1° Gruppo, 6° Periodo, sotto il rubidio e davanti al francio. È un metallo alcalino morbido, di colore argenteo-dorato con punto di fusione di 28,5 °C, uno dei soli cinque metalli liquidi a temperatura ambiente o vicina ad essa. Il cesio ha proprietà fisiche e chimiche simili a quelle del rubidio e del potassio. La sua abbondanza nella crosta terrestre è valutata in 3 ppm.
Nel 1860, Robert Bunsen e Gustav Kirchhoff scoprirono il cesio nell’acqua minerale di Dürkheim, in Germania. A causa delle linee blu nello spettro di emissione, gli assegnarono il nome latino caesius, che significa azzurro cielo. Il cesio fu il primo elemento a essere scoperto con uno spettroscopio, inventato da Bunsen e Kirchhoff solo un anno prima.

 

Figura 2. Campione di cesio metallico
In presenza di olio minerale (dove è meglio conservato) perde la sua lucentezza metallica e assume un aspetto più opaco e grigio. Ha un punto di fusione di 28,5 °C, rendendolo uno dei pochi metalli elementari che sono liquidi vicino alla temperatura ambiente. Il mercurio è l’unico metallo elementare stabile con un punto di fusione noto inferiore al cesio. Inoltre, il cesio ha un punto di ebollizione piuttosto basso, 641 °C, il più basso di tutti gli altri metalli tranne che del mercurio. I suoi composti bruciano con un colore blu o violaceo.
Il cesio forma leghe con gli altri metalli alcalini, oro e mercurio (amalgame). A temperature inferiori a 650 °C non si lega con cobalto, ferro, molibdeno, nichel, platino, tantalio o tungsteno. Forma composti intermetallici ben definiti con antimonio, gallio, indio e torio, che sono fotosensibili. Si miscela con tutti gli altri metalli alcalini (escluso il litio); la lega con una distribuzione molare del 41% di cesio, 47% di potassio e 12% di sodio ha il punto di fusione più basso (−78 °C ) di qualsiasi lega metallica nota. Sono state studiate alcune amalgame: CsHg2 è nera con una lucentezza metallica viola, mentre CsHg è di colore dorato, pure con lucentezza metallica.
Il colore dorato del cesio metallico deriva dalla diminuzione della frequenza della luce necessaria per eccitare gli elettroni dei metalli alcalini quando si scende nel gruppo. Per il litio attraverso il rubidio questa frequenza è nell’ultravioletto, ma per il cesio entra nell’estremità blu-violetta dello spettro (Figura 3).

Figura 3. Rubidio e Cesio metallici puri
Proprietà chimiche
Il cesio metallico è altamente reattivo e molto piroforico. Si accende spontaneamente all’aria e reagisce in modo esplosivo con l’acqua anche a basse temperature, più degli altri metalli alcalini. Reagisce con il ghiaccio a temperature fino a -116 °C. A causa di questa elevata reattività è classificato come materiale pericoloso. Viene immagazzinato in idrocarburi saturi e secchi , come l’olio minerale. Può essere manipolato solo in atmosfera di gas inerte, ad es. l’argon. Il cesio deve essere conservato in fiale di vetro borosilicato sottovuoto. La sua chimica è simile a quella di altri metalli alcalini, in particolare il rubidio, l’elemento sopra il cesio nella tavola periodica. Come previsto per un metallo alcalino, l’unico stato di ossidazione comune è +1. Alcune piccole differenze derivano dal fatto che ha una massa atomica più elevata ed è più elettropositivo di altri isotopi non radioattivi di metalli alcalini. Il cesio è l’elemento chimico più elettropositivo.
Il cesio naturale ha un solo isotopo stabile, il cesio-133 (o 133Cs). Esistono comunque 39 isotopi artificiali noti, che variano in numero di massa da 112 a 151. Molti di questi sono sintetizzati da elementi più leggeri dal lento processo di cattura dei neutroni (processo S) all’interno di vecchie stelle e dal processo R nelle esplosioni delle supernove.
Il 135Cs radioattivo ha un’emivita molto lunga di circa 2,3 milioni di anni, il più lungo di tutti gli isotopi radioattivi del cesio. 137Cs e 134Cs hanno rispettivamente un’emivita di 30 e due anni. 137Cs si decompone in137Ba di breve durata per decadimento beta, e quindi in bario non radioattivo, mentre 134Cs si trasforma direttamente in 134Ba. L’isotopo 135Cs è uno dei prodotti di fissione a lunga vita dell’uranio prodotto nei reattori nucleari. Tuttavia, la resa di questo prodotto di fissione è ridotta nella maggior parte dei reattori perché il predecessore è un potente veleno per i neutroni e spesso si trasmuta in 136Xe stabile.
Il decadimento beta da 137C a 137Ba presenta una forte emissione di radiazioni gamma. 137C e 90Sr sono i principali prodotti a vita media della fissione nucleare, prime fonti di radioattività dal combustibile nucleare esaurito dopo diversi anni di raffreddamento, della durata di diverse centinaia di anni. Questi due isotopi sono la più grande fonte di radioattività residua nell’area del disastro di Chernobyl del 1986. A causa del basso tasso di cattura, lo smaltimento di 137Cs tramite cattura di neutroni non è fattibile e l’unica soluzione attuale è di consentirne il decadimento nel tempo.
Con i test sulle armi nucleari negli anni ’50 fino agli anni ’80, 137Cs è stato rilasciato nell’atmosfera e restituito alla superficie della terra come componente del fallout radioattivo. È l’indicatore principale del movimento del suolo e dei sedimenti di quei tempi.
Principali composti
La maggior parte dei composti di cesio contiene l’elemento come catione Cs+, che si lega ionicamente a un’ampia varietà di anioni. I sali di Cs+fammide sono generalmente incolori a meno che l’anione stesso non sia colorato. Molti dei sali semplici sono igroscopici, ma meno dei corrispondenti sali dei metalli alcalini più leggeri. Fosfato, acetato, carbonato, alogenuri, ossido, nitrato e solfato sono solubili in acqua. I doppi sali sono spesso meno solubili e la bassa solubilità del solfato di cesio e alluminio viene sfruttata nella raffinazione del Cs dai minerali.
Più degli altri metalli alcalini, il cesio forma numerosi composti binari con l’ossigeno. Quando il cesio brucia all’aria, il principale prodotto è il superossido, CsO2. L’ossido di cesio Cs2O forma cristalli giallo arancio esagonali, vaporizza a 250 °C, e si decompone a cesio metallico e perossido Cs2O2 a temperature sopra i 400 °C. In aggiunta a questi ossidi, sono noti molti altri subossidi intensamente colorati. Esistono anche composti binari con zolfo, selenio e tellurio.
L’idrossido di cesio (CsOH) è igroscopico e fortemente basico, attacca rapidamente la superficie dei semiconduttori come il silicio. Il CsOH è stato considerato dai chimici come la “base più forte”, riflettendo l’attrazione relativamente debole tra il grande catione Cs+ e l’anione OH. È effettivamente la base di Arrhenius più forte, se si escludono composti organici che non si dissolvono in acqua, come n-butillitio e altri composti come la sodio ammide, che sono più basici. Userei cautela a infilare in questo paragone gli idruri di questo tipo che non sono stabili in nessun solvente, non esistono in soluzione.
Come tutti i cationi metallici, Cs+ forma complessi con basi di Lewis in soluzione. A causa delle sue grandi dimensioni, Cs+ adotta solitamente numeri di coordinazione maggiori di 6, il numero tipico per i cationi di metalli alcalini più piccoli. Questa differenza è evidente nella coordinazione 8 dei cristalli di cloruro di cesio.
Questo elevato numero di coordinazione insieme alla tendenza a formare legami covalenti sono proprietà sfruttate per separare Cs+ da altri cationi nella bonifica dei rifiuti nucleari, dove 137Cs+ deve essere separato da grandi quantità di K+ non radioattivo.
Il fluoruro di cesio (CsF) è un solido bianco igroscopico ampiamente utilizzato nella chimica dei composti organici del fluoro come fonte di anioni fluorurati. In particolare, il cesio e il fluoro hanno rispettivamente la più bassa e la più alta elettronegatività tra tutti gli elementi noti.
Il cloruro di cesio (CsCl) cristallizza nel semplice sistema cristallino cubico. Chiamato anche “struttura del cloruro di cesio” è composta da un reticolo cubico con una base di due atomi, ciascuno con una coordinazione di otto volte; gli ioni cloruro giacciono sui punti reticolari ai bordi del cubo, mentre gli atomi di cesio si collocano al centro dei cubi (Figura 4). Questa struttura è condivisa con CsBr e CsI.

Figura 4. Struttura cristallina poliedrica di CsCl
Al contrario, la maggior parte degli altri alogenuri alcalini ha la struttura del cloruro di sodio (NaCl). La struttura CsCl è preferita perché Cs+ ha un raggio ionico di 174 pm e Cl di 181 pm.
Disponibilità
Il cesio è un elemento relativamente raro, stimato in media 3 parti per milione nella crosta terrestre. È il 45° elemento più abbondante e il 36° tra i metalli. È più abbondante di elementi come antimonio, cadmio, stagno e tungsteno, e due ordini di grandezza più abbondante del mercurio e dell’argento; è il 3,3% abbondante del rubidio, al quale è chimicamente strettamente associato.
A causa del suo ampio raggio ionico, il cesio è uno degli “elementi incompatibili” . Durante la cristallizzazione del magma, il cesio si concentra nella fase liquida e cristallizza per ultimo. Pertanto, i più grandi depositi di cesio sono i minerali pegmatiti delle zone formatisi da questo processo di arricchimento. Di conseguenza, il cesio si trova in pochi minerali. Quantità percentuali di cesio possono essere trovate nel berillo (Be3Al2(SiO3)6), nell’avogadrite ((K,Cs)BF4), nella pezzottaite (Cs(Be2Li)Al2Si6O18), nel minerale raro londonite ((Cs,Al4Be4(B, Be)12O28), e nella più diffusa rodizite. L’unico minerale economicamente importante per il cesio è la pollucite Cs (AlSi2O6), che si trova in pochi posti nel mondo nelle pegmatiti, associata ai minerali di litio più importanti dal punto di vista commerciale, lepidolite e petalite.

Figura 5. Campione di pollucite
All’interno delle pegmatiti, la grande granulometria e la forte separazione dei minerali si traducono in minerali di alta qualità per l’estrazione.
La fonte di cesio più significativa e più ricca al mondo è la miniera di Tanco nel lago Bernic a Manitoba, in Canada, che si stima contenga 350.000 tonnellate di minerale pollucite, rappresentando più di due terzi delle riserve mondiali. La pollucite commerciale contiene più del 19% di cesio. Il deposito di pegmatite Bikita nello Zimbabwe viene estratto per la sua petalite, ma contiene anche una quantità significativa di pollucite. Un’altra notevole fonte di pollucite si trova nel deserto del Karibib, in Namibia. Al ritmo attuale della produzione mineraria mondiale di 5-10 tonnellate l’anno, le riserve dureranno per migliaia di anni.
Produzione
L’estrazione e la raffinazione del minerale di pollucite sono un processo selettivo e sono condotti su scala minore rispetto alla maggior parte degli altri metalli. Il minerale viene frantumato, selezionato a mano, di solito non concentrato e quindi macinato. Il cesio viene quindi estratto dalla pollucite principalmente mediante tre metodi: digestione acida, decomposizione alcalina e riduzione diretta.
Nella digestione acida, la roccia silicatica di pollucite viene sciolta con acidi forti, come gli acidi cloridrico (HCl), solforico (H2SO4), bromidrico (HBr) o fluoridrico (HF). Con acido cloridrico, viene prodotta una miscela di cloruri solubili e i doppi sali insolubili di cesio vengono precipitati come cloruro di antimonio di cesio (Cs4SbCl7), cloruro-ioduro di cesio (Cs2ICl) o esaclorocerato di cesio (Cs2(CeCl6)). Dopo la separazione, il doppio sale precipitato puro viene decomposto e CsCl puro viene precipitato evaporando l’acqua.
Il metodo dell’acido solforico produce il doppio sale insolubile direttamente come allume di cesio (CsAl (SO4)2·12H2O). Il componente solfato di alluminio viene convertito in ossido di alluminio insolubile arrostendo l’allume con carbone e il prodotto risultante viene lisciviato con acqua per ottenere una soluzione Cs2SO4.
La torrefazione della pollucite con carbonato di calcio e cloruro di calcio produce silicati di calcio insolubili e cloruro di cesio solubile. La lisciviazione con acqua o ammoniaca diluita produce una soluzione di cloruro diluito (CsCl). Questa soluzione può essere evaporata per produrre cloruro di cesio o trasformata in allume di cesio o carbonato di cesio. Sebbene non sia commercialmente fattibile, il minerale può essere ridotto direttamente con potassio, sodio o calcio sotto vuoto in grado di produrre direttamente il cesio metallico (Figura 6).

Figura 6. Campione di cesio metallico puro
La maggior parte del cesio estratto (come sali) viene convertito direttamente in formiato di cesio (HCOO − Cs) per applicazioni come la trivellazione petrolifera.
I composti commerciali primari su scala ridotta del cesio sono il cloruro di cesio e il nitrato.
In alternativa, il cesio metallico può essere ottenuto dai composti purificati derivati dal minerale. Il cloruro di cesio e gli altri alogenuri di cesio possono essere ridotti a 700 − 800 ° C con calcio o bario e il cesio metallico distillato dal resto. Allo stesso modo, l’alluminato, il carbonato o l’idrossido possono essere ridotti dal magnesio.
Il metallo può anche essere isolato mediante elettrolisi del cianuro di cesio fuso (CsCN). Il cesio eccezionalmente puro e privo di gas può essere prodotto dalla decomposizione termica a 390 ° C dell’azoturo di cesio CsN3, che può essere prodotto da solfato di cesio acquoso e azoturo di bario. Nelle applicazioni sotto vuoto, il bicromato di cesio può essere fatto reagire con lo zirconio per produrre cesio metallico puro senza altri prodotti gassosi:
Cs2Cr2O7 + 2Zr → 2Cs + 2ZrO2 + Cr2O3
(continua)

Opere consultate
Handbook of Chemistry and Physics 85th Ed. pag. 4-8
https://en.wikipedia.org/wiki/Caesium