Il caso elio.

Claudio Della Volpe

A partire dal 2012 e a più riprese i giornali internazionali (molto meno i nostri quotidiani alquanto provincialotti) hanno lanciato l’allarme per i problemi che subiva l’approvvigionamento dell’elio; l’helium shortage, ha avuto l’onore delle cronache[1]. L’allarme è stato rilanciato varie volte[2], ma di cosa si tratta e come mai esiste questo problema?

L’elio è il secondo elemento come abbondanza nell’Universo, ma è molto raro sulla Terra, dove viene prodotto dal decadimento degli elementi radioattivi nell’interno del pianeta ed è presente in atmosfera con una percentuale dello 0.00052%, cosi’ raro che estrarlo dall’atmosfera è privo di senso economico; così raro che fu scoperto prima di tutto nello spettro solare da Jansenn nel 1868; fu Luigi Palmieri, un mio conterraneo, a individuarlo, sempre spettroscopicamente, per primo sul nostro pianeta nelle lave vesuviane nel 1882; ma la scoperta ufficiale arrivò solo nel 1892 da parte di Cleve e Langlet che ne individuarono nel minerale cleveite e ne misurarono il peso atomico.

Infine solo nel 1903 ne furono individuate significative quantità nel gas naturale degli USA; e da allora fino ad oggi gli Usa ne sono stati il principale produttore. Da quel gas viene separato attraverso la distillazione frazionata e la filtrazione, sfruttando le sue proprietà fisiche, bassissimo peso atomico e punto di ebollizione. Nel gas naturale delle grandi pianure di alcuni stati americani ce n’era una percentuale dell’ordine del 2-4%; col tempo ne sono state individuate altre fonti ma non molto numerose nel mondo e comunque con percentuali di molto inferiori; oggi viene considerato sfruttabile un giacimento che ne contenga almeno lo 0.15%.

I giacimenti sono mostrati in rosso nella figura acclusa estratta da un volantino della Messer, che è uno dei grandi produttori mondiali.

L’andamento della produzione mondiale, tratto dai dati della USGS è invece mostrato nel grafico qui sotto, in cui si riportano sia la produzione annua (in rosso) che quella totale estratta (in blù). Se guardate il grafico vi rendete conto che la guerra e poi soprattutto la conquista dello spazio sono stati due momenti importanti per lo sviluppo del consumo di elio. Gli USA che fin dalla prima guerra mondiale avevano “nazionalizzato” l’elio costruendo un deposito sotterraneo di gas ad Amarillo (Cliffside Reserve), cui partecipavano tutti gli estrattori privati, sono stati sempre un player dominante del mercato mondiale.

Questa politica ha avuto un grande costo economico per lo stato ed ha attraversato dei momenti di crisi, il primo con la fine del sogno dei dirigibili (tutti conoscono il dramma Hindenburg, molti meno quello dei due dirigibili ad elio USA fra le due guerre); poi con la fine dell’esplorazione dello spazio e della guerra fredda[3]. Il debito accumulato dallo stato nei confronti dei privati è stato tale da costringerlo a rinunciare a questa attività; e la decisione ha sballato il mercato mondiale dell’elio. Certo negli anni si erano sviluppati degli altri players, ma nessuno ha a disposizione giacimenti così ricchi e ampi come quelli americani e tutti stentano a decollare.

La bibbia di tutti coloro che si occupano di risorse minerarie è certamente il sito dell’US Geological Survey dove troviamo uno speciale report[4] sull’elio che è stato considerato negli USA un materiale strategico fino dall’origine, dal principio del XX secolo, quando si resero disponibili sorgenti minerarie di elio. Il report dell’USGS ci conferma che non mancano per il momento depositi naturali di gas contenente elio, ci si aspettano riserve+risorse per oltre 50 miliardi m3 (>9Mton), di cui un 40% in USA e sole riserve (quelle già accertate e tecnicamente possibili) per almeno 7 miliardi, contro un consumo annuo di 0.2 miliardi. Ma, attenzione se pure prendiamo per buone queste cifre, che comunque ci dicono che l’elio non è infinito (ne abbiamo di sicuro solo per grossolanamente 35 anni, se non teniamo conto della concentrazione decrescente), è chiaro che i costi sono in netto aumento, costi energetici ed economici. Il deposito di Cliffside-Amarillo ne contiene 0.7 miliardi e le sorgenti USA in attività meno di 4 miliardi stimati. Tutti i depositi “tradizionali” scoperti in giro per il mondo hanno una qualità ed una abbondanza nettamente inferiori. Insomma una situazione complessa e nell’immediato foriera di forti aumenti di prezzo: scordatevi i palloncini! L’elio serve nell’industria (saldature, fibre ottiche) e nei servizi (magneti molto forti). L’elio, come il fosforo non è “fungibile”, è unico come gas.

Con questi precedenti non è più strano che nei mesi recenti la stampa mondiale abbia gridato al miracolo per la scoperta di un grande giacimento di elio ritrovato in Tanzania; A new approach to gas exploration has discovered a huge helium gas field, which could address the increasingly critical shortage of this vital yet rare element ha titolato sul suo sito l’Università di Oxford ricopiata dai grandi giornali di tutto il mondo.

Ma guardandola bene questa è una storia che fa capire come la stampa ma anche i tecnici non conoscano a fondo il problema risorse e non siano dunque in grado di valutare con calma e ragionevolezza la situazione contribuendo di fatto ad aggravare, mediante falsi miti, una situazione delle risorse minerarie che è sempre più grave.

[5]

Certamente il metodo usato per la scoperta è interessante, trattandosi di una collaborazione fra l’Università di Oxford e il gruppo HeliumOne che hanno applicato nuovi metodi di ricerca mostrando che l’attività vulcanica fornisce l’intenso calore necessario a far rilasciare il gas dalle antiche rocce che lo intrappolano. Nella Rift Valley i vulcani hanno rilasciato elio dalle antiche rocce profonde intrappolandolo in depositi di gas più superficiali.

La combinazione della conoscenza geochimica e delle tecniche di ricerca basate sulle onde sismiche hanno consentito di ricostruire la forma, la posizione e l’importanza del giacimento; i ricercatori tuttavia non sono stati ancora in grado di dire quanto facilmente si potrà liberare l’elio da altri gas (che è poi il problema delle risorse di elio e un pò di tutta l’attività mineraria).

Come si vede dai dati del primo grafico il consumo mondiale annuo viaggia sotto le 30.000ton (180Mm3); le riserve accertate ed estraibili di Elio assommano secondo la USGS a 7-8 Gm3, mentre le risorse, ossia le quantità scoperte ma di cui non si sa esattamente la effettiva resa, assommano a 20.6 Gm3, in USA e 31.3 Gm3 fuori dagli USA.

Si può guardare alla situazione da un punto di vista diverso usando la teoria di Hubbert (lo scopritore del picco del petrolio); secondo il suo approccio formale una risorsa finita ed usata nel modo tradizionale va incontro ad un picco di produzione e poi ad una lenta decrescita; in particolare se si riporta il rapporto P/Q, produzione annua su estrazione totale nel tempo contro Q si ottiene un comportamento lineare discendente a zero da cui si può estrapolare la durata della risorsa. Il mercato dell’elio si adatta male a questo approccio date le sue peculiarità ma è comunque interessante verificare.

Come si vede la riduzione lineare (che corrisponde ad un picco attorno al 1970 che vedete nel primo grafico) si è verificata fino a quando la produzione americana ha dominato le cose mondiali; con la scoperta ed entrata sul mercato di altre risorse (che come dicevamo sono però meno ricche comunque) le cose sono cambiate; l’andamento P/Q vs Q è in leggera discesa ma il fittaggio non è chiaro, non è in grado di darci una estrapolazione significativa.

Cosa cambia con la scoperta tanzaniana? Lo scopritore prof. Ballentine del Dipartimento di Scienze della Terra dell’Università di Oxford dice:

By combining our understanding of helium geochemistry with seismic images of gas trapping structures, independent experts have calculated a probable resource of 54 Billion Cubic Feet in just one part of the rift valley.

Dato che un metro cubo è oltre 35 piedi cubi stiamo parlando di poco più di un miliardo e mezzo di metri cubi, ossia un incremento “probabile” delle risorse pari a meno del 3% (in termini di riserve medie sarebbe ancora più piccolo di circa 7 volte); certamente è possibile che ci siano altre scoperte di questo tipo con la nuova metodica, ma quali saranno le effettive percentuali di passaggio da risorse a riserve vere e proprie? Se usiamo il rapporto attuale di circa 7 il giacimento trovato potrebbe soddisfare i consumi mondiali solo per poco più di un anno (220Mm3). Possiamo concludere che non è cambiato granchè e ce ne sarebbero molti altri di giacimenti di questo tipo da scoprire per “risolvere” il problema di una risorsa mineraria importante ma le cui disponibilità sono e rimangono limitate e il cui prezzo tende a crescere da molto tempo.

L’unico modo saggio è quello di prevenire il problema eliminando gli sprechi ed introducendo meccanismi di recupero e di riciclo in tutte le applicazioni chiave dell’elio a partire da quelle nel campo della sanità e della ricerca (nei grandi NMR per esempio).

Economia circolare è la risposta ai problemi delle risorse, non nuove scoperte “epocali”, ma che lasciano sostanzialmente immutata la situazione, e casomai costituiscono una occasione per ulteriore distruzione della Natura, una fonte di arricchimento per una esigua minoranza e una dimostrazione di incompetenza per i giornali anche tecnici.

[1] Popular Mechanics 25 June 2012: Why Is There a Helium Shortage?

[2] The independent 5/1/2013: A ballooning problem: the great helium shortage

https://www.wired.com/2015/07/feds-created-helium-problem-thats-screwing-science/

[3]W. J. Nuttall, R. H. Clarke, B. A. Glowack- The Future of Helium As a Natural Resource, Routledge 2012

[4]http://minerals.usgs.gov/minerals/pubs/commodity/helium/mcs-2012-heliu.pdf

[5]http://www.airproducts.com/~/media/files/pdf/industries/metals-helium-recovery-recycling-good-business-sense.pdf

 

L’elio forma molecole stabili ad alte pressioni

Rinaldo Cervellati

Gli autori di libri di testo di chimica potrebbero presto dover riscrivere i capitoli sui gas nobili e l’inerzia chimica, commenta Mitch Jacoby nel riportare, per c&en newsletter, la notizia della sintesi di un composto di elio e sodio stabile ad alte pressioni, ottenuto da un team di ricercatori internazionale. Il gruppo, una ventina di ricercatori in prevalenza russi, cinesi e americani con alcuni europei fra i quali l’italiano Carlo Gatti, ha recentemente pubblicato i dettagli della ricerca (Xiao Dong et al., A stable compound of helium and sodium at high pressure, Nature chemistry, 2017 on line 6 february 2017, DOI: 10.1038/nchem.2716).

La caratteristica più nota dell’elio è stata la sua assenza di volontà di reagire. Con una configurazione elettronica stabile, affinità elettronica tendente a zero e una energia di ionizzazione superiore a quella di tutti gli altri elementi, l’elio è il prototipo dell’inerzia chimica.

Per esaminare la scarsissima reattività di questo elemento, gli scienziati hanno tentato sia attraverso metodi teorici sia sperimentali di individuare le condizioni per ottenere composti dell’elio. Con scarso successo, almeno fino a oggi, ottenendo solo specie insolite, come il radicale HeH+, stabile solo nella sua forma positivamente carica, e HHeF, una molecola metastabile. Al contrario, è noto da molto tempo che i gas nobili a più elevato peso atomico, xeno e cripto, sono in grado di formare una varietà di composti stabili. In particolare i fluoruri di xeno: XeF2, il difluoruro, è il più stabile, si presenta come un solido cristallino bianco molto sensibile all’umidità, disponibile commercialmente e usato nelle reazioni di fluorurazione. Il tetrafluoruro, XeF4 è stato il primo composto di un gas nobile a essere sintetizzato nel 1962 (H. H. Claassen, H. Selig e J. G. Malm, Xenon Tetrafluoride, J. Am. Chem. Soc., 1962, 84, 3593), si presenta pure come solido cristallino sensibile all’umidità, molto più reattivo del difluoruro. L’esafluoruro, XeF6, è ancora più reattivo potendo funzionare sia come donatore sia come accettore di ioni fluoruro.

Il team internazionale di ricerca, coordinato dai Prof. Artem R. Oganov (Skolkovo Institute of Science & Technology, Mosca; Stony Brook University, USA), Xiang-Feng Zhou (Nankai University, Tianjin, Cina; Chemistry Division, Brookhaven National Laboratory, NY USA), Hui-Tian Wang (Nankai University, Tianjin, Cina), ha continuato e ampliato la ricerca di composti stabili dell’elio.

fig-1a-oganov

Oganov

fig-1b-xiang-feng-zhou

xiang-feng-zhou

Il gruppo ha usato una strategia computazionale nota come previsione della struttura evolutiva (USPEX) per individuare gli scenari di interazione elio-sodio in una vasta gamma di pressioni. La conclusione è stata che Na2He dovrebbe essere termodinamicamente stabile a pressioni superiori a circa 115 GPa, cioè più di 1 milione di volte superiore a quello della pressione atmosferica della Terra.

Per realizzare gli esperimenti i ricercatori hanno utilizzato una cella a incudini di diamante (DAC) che permette di raggiungere altissimi valori di pressione, ottenendo infine il composto cercato. In breve, e con riferimento allo schema di figura 2:

fig-2-schema-apparato-sperimentaleuna cella ad incudini di diamante è formata da due diamanti tagliati a forma di tronco di piramide con punta molto fine in modo da esercitare una fortissima pressione. Il campione (cioè l’oggetto in questione), che in condizioni normali può essere sia solido, che liquido o gassoso, di dimensioni opportune, viene posto tra le facce piane dei due diamanti naturali, e mantenuto in questa posizione mediante una guarnizione metallica, anch’essa schiacciata tra i diamanti. I due diamanti sono poi pressati uno contro l’altro e così facendo esercitano una grande pressione sul campione posto nel mezzo. Si usano i diamanti naturali perché essi sono gli oggetti più duri che esistono in Natura e non si danneggiano a causa delle altissime pressioni che producono. Si possono così studiare, in condizioni estreme, sistemi di grande importanza in fisica fondamentale, in geologia, in scienza dei materiali e in astrochimica.

Il composto Na2He è stato caratterizzato per diffrattometria a raggi X, spettroscopia Raman e altri metodi. Il gruppo di ricerca riporta che la sua struttura è simile a quella del minerale fluorite, è elettricamente isolante e rimane stabile fino a 1000 GPa. La struttura del nuovo composto è mostrata in figura 3.

fig-3-struttura-di-na2he

Questa scoperta dimostra che l’elio non è completamente inerte come si pensava”, ha commentato Carlo Gatti (Istituto di Scienze e Tecnologie Molecolari del CNR, Milano), che ha contribuito allo studio come esperto di legami chimici, “In certe condizioni può formare dei composti e addirittura assumere una carica negativa. Di fatto, quello che capita è la creazione di coppie elettroniche che occupano alternativamente le posizioni dell’elio”.

fig-4-carlo-gatti

Carlo Gatti

Na2He appartiene infatti alla categoria dei cosiddetti elettruri – materiali cristallini simili a sali – in cui gli elettroni prendono il posto degli ioni negativi alternandosi a un reticolo di ioni carichi positivamente, rappresentati in questo caso dal sodio.

I ricercatori hanno anche teorizzato che il composto Na2HeO, che non hanno ancora sintetizzato, dovrebbe essere stabile a pressioni superiori a 15 GPa.

Questo studio mette in evidenza come l’alta pressione può essere utilizzata per la sintesi di composti con nuove stechiometrie e strutture elettroniche“, dice Eva Zurek, specialista in chimica computazionale presso la State University of New York, SUNY a Buffalo. Na2He non potrebbe mai essere stabile in condizioni atmosferiche, osserva Zurek, ma è stato ottenuto a circa il 40% della pressione presente al centro della Terra. I risultati amplieranno la comprensione dei processi chimici che possono verificarsi a grandi pressioni all’interno giganti gassosi come Giove e Saturno.

Il chimico inorganico Sven Lidin dell’Università di Lund (Svezia), osserva che le implicazioni per l’astronomia sono chiaramente interessanti “ma per quanto riguarda la nostra percezione della reattività chimica, questo risultato è un cambio di prospettiva.

Dice infatti Lidin: già le scoperte precedenti di altri composti dei gas nobili avevano messo in chiaro che l’inerzia è una questione di condizioni di reazione. Ma l’elio è stato un resistente anche in condizioni estreme, perché si tiene i suoi elettroni chiusi quasi ermeticamente e non li lascia andare. Questi nuovi risultati, aggiunge, mostrano che in un certo senso, “l’ultimo bastione sulla inerzia chimica è finalmente caduto.

Fonte: c&en newsletter web february 9, 2017