Uno sguardo all’effetto Volta e alla giunzione P-N.

Claudio Della Volpe

Da quasi 20 anni faccio un corso di elettrochimica, anche se con titoli diversi; il corso di quest’anno si chiama Electrochemical energy storage and conversion (originariamente il titolo conteneva production, ma il primo principio ci ha obbligato a cambiare nome) . Uno dei concetti che cito di più è l’effetto Volta o prima legge di Volta: il contatto tra due metalli diversi alla stessa temperatura fa sì che si stabilisca una differenza di potenziale caratteristica della natura dei metalli che non dipende dall’estensione del contatto.

Volta è stato un genio, un grande scienziato che con a disposizione strumenti limitati è stato in grado di costruire una coerente visione della realtà naturale.

Pochi sanno che Volta ha usato come strumento prima di tutto il proprio corpo; i suoi sensi e gli effetti biologici della corrente elettrica sono stati il suo primo strumento di lavoro (testava la corrente con la lingua, gli occhi, il naso).

Volta era anche un piacevole raccontatore; le sue opere, piacevolissime da leggere sono state raccolte da UTET (A. Volta Opere scelte, a cura di Mario Gliozzi, 1967), un testo che si trova anche in rete e che vi consiglio caldamente anche per la vasta e completa introduzione.La interpretazione moderna dell’effetto Volta è per me la chiave di volta, (scusate il gioco di parole) anche per introdurre i potenziali termodinamici misti: elettrochimico, gravitochimico o ancora termogravitochimico.

Concetti usati moltissimo in settori i più disparati, dall’elettrochimica alla meteorologia, ma che trovano la loro base nella formalizzazione robusta della termodinamica e nella trattazione della termodinamica del vicino equilibrio.

Nell’elettrochimica moderna l’elettrone è considerato una specie reattiva come un’altra; possiede dunque un suo potenziale chimico oltre che un potenziale elettrico. Per chi avesse difficoltà a considerare il potenziale chimico dell’elettrone gli consiglio di immaginarlo come la concentrazione di elettroni “liberi” in un certo ambiente.

I fenomeni legati al funzionamento delle valvole termoioniche per esempio rendono evidente che gli elettroni nel vuoto relativo della valvola si comportano come un gas di particelle libere in equilibrio con le superfici metalliche a diverse temperature; semplici esperimenti fattibili anche con lampadine da auto rotte vi consentono di mostrare che se aumentate la temperatura del metallo gli elettroni fluiscono verso un secondo elettrodo presente nella valvola.Insomma si comportano come particelle di un gas, ma in più trasportano una carica e dunque sono una corrente: chimica ed elettricità si fondono nell’analisi di una valvola termoionica, che purtroppo è uscita dall’orizzonte tecnologico, ma rimane un potente strumento didattico (si chiama anche effetto Edison).

(si veda per esempio : https://aapt.scitation.org/doi/abs/10.1119/1.5051166?journalCode=pte)

Allora tornando all’effetto Volta:

avete due metalli diversi a contatto, zinco e rame; il primo presenta un potenziale chimico dell’elettrone superiore, ossia i suoi elettroni hanno una maggiore tendenza a diffondere o se volete una maggiore “concentrazione”(i puristi si tappino il naso).

Ebbene essi si sposteranno dal lato del rame generando una differenza di potenziale che ad un certo punto si opporrà al moto ulteriore, ma la barriera di potenziale si sarà creata, sarà gratuita, stabile ed utile; questo concetto si può applicare a TUTTE le sostanze.

All’equilibrio avrete che le due differenze di potenziale si equivarranno:

Δμ+nFΔV=0 il potenziale misto, elettrochimico è nullo e il sistema è all’equilibrio

(per trasformare in energia la parte elettrica ho moltiplicato la differenza di potenziale elettrico per la carica, a sua volta espressa come prodotto del numero di moli di carica per il Faraday).

Il famoso esperimento che tutti i ragazzini fanno con penna a maglietta per caricare la penna, in realtà funziona anche senza grattare la penna sulla maglia ma molto meno; anche penna e maglietta sono (poco) conduttori; per esaltare le superfici di contatto e ampliare il fenomeno si grattano reciprocamente e l’attrito fa la sua parte; ma il fenomeno sarebbe evidente con un microelettroscopio.Qua si potrebbe estendere il discorso alla serie triboelettrica con innumerevoli applicazioni industriali: i polimeri idrofobici come il teflon ad una estremità, si caricano negativamente, l’aria positivamente. I chimici si sono inventati il concetto di “trasferimento di carica” per studiare queste cose o la teoria acido-base delle superfici (Good, van Oss e Chaudury), cui ho dato qualche contributo, ma i concetti sono sempre quelli.

Le motivazioni chimiche sono facilmente deducibili e il potenziale misto rappresenta un potente strumento concettuale unificante.

Lo strumento base dell’elettronica moderna è basato esattamente sull’esperimento di Volta: la giunzione P-N.

Due semiconduttori, in genere silicio ultrapuro da un lato arricchito di fosforo e dall’altro di boro; in questo modo si altera in modo opposto il potenziale chimico dell’elettrone; dal lato del fosforo si avranno elettroni in eccesso non legati, rispetto ai legami possibili (silicio-n)e dall’altra se ne avranno in difetto (silicio-p).

Per effetto Volta gli elettroni si spostano dall’-n al –p e a questo punto se per qualche motivo liberate elettroni a destra (tramite poniamo un fascio di luce solare) questi poverini spinti a diffondere verso potenziali superiori non potranno traversare la barriera e dovranno giocoforza fluire nel circuito elettrico (esterno all’immagine) che gli metteremo a disposizione!

Le celle FV sono esattamente questo; ma anche i LED sono questo, sono delle giunzioni PN in cui però la logica costruttiva e diversa perché finalizzata a fare la cosa opposta: trasformare in luce un flusso di corrente.

Un LED non è fatto come una cella FV ma è basato sui medesimi principi: primo effetto Volta.

se voi esponete un LED alla luce il LED fa il suo lavoro alla rovescia; produce una differenza di potenziale ed una minuscola corrente; si può costruire una cella FV fatta di LED; ovviamente sarebbe poco efficiente perché la sua geometria interna non è ottimale.

(si veda https://www.youtube.com/watch?v=L3-0aCJOedo)

Una cosa da precisare; queste giunzioni sono macchine termodinamiche che rispettano ovviamente il secondo principio: quando fate una trasformazione da una forma di energia all’altra avrete sempre una dissipazione termica; tutte le macchine termodinamiche (intese come i dispositivi di conversione dell’energia da una forma all’altra) seguono questa legge ma con un ma.

Ci sono due classi di macchine quelle che lavorano attraverso un salto termico come le macchine termiche tradizionali le turbine, le macchine a vapore o le giunzioni PN che sfruttano la luce oppure le macchine elettrochimiche o le giunzioni PN che NON sfruttano la luce.

Le prime seguono la seconda legge nella forma tradizionale di Carnot la loro efficienza massima è dettata da η=1-Tbassa/Talta

La altre no! Sono isoterme e dunque la temperatura non influenza la loro efficienza, ma invece lo fa il potenziale elettrico: η=Veff /Vequ per una cella elettrochimica. Le celle elettrochimiche e le batterie si fanno un baffo di Carnot.

Le giunzioni PN che sfruttano la luce si comportano come macchine termiche fra la T della sorgente e la T ambiente); le celle FV avrebbero una mostruosa efficienza (superiore al 90%) se potessero sfruttare TUTTA la radiazione in arrivo, ma di solito sono limitate ad un intervallo discreto e dunque la loro efficienza con la luce solare ed una giunzione PN singola non supera un modesto ma interessante 33.7% (il limite di Shockley–Queisser); se si mettono insieme più giunzioni diverse o si scelgono sorgenti diverse dal Sole le cose cambiano. Le celle multigiunzione arrivano ormai a superare il 45%! I LED possono addirittura arrivare ad efficienze teoriche si apure come ogni macchina che s rispetti a bassa intensità (https://phys.org/news/2012-03-efficiency.html).

Quando racconto queste cose ai miei studenti cerco di metterli in difficoltà il che non è difficile perché gli studenti raramente fondono insieme la visione termodinamica , chimica e quella della Fisica dello stato solido e dunque se chiedo:

ragazzi la Terra emette nell’IR tutta l’energia che riceve dal Sole, sia di giorno che di notte; allora come mai non posso mettere in cantina delle celle FV che siano centrate non sul visibile ma sull’IR e rivolte verso terra e ottenere energia elettrica in questo modo

rispondono:

si, buona idea, ma non ci sono i materiali adatti

Beh non è vero, ci sono le celle FV nell’IR e la loro efficienza sta rapidamente crescendo; ma il motivo è diverso; anche con i materiali migliori non potremo mai usare la Terra come sorgente IR nella nostra cantina, per un semplice motivo termodinamico; la T della sorgente terra sarebbe uguale a quella del ricevitore e allora l’efficienza termodinamica sarebbe nulla!

L’unica cosa che potremo fare è portare una aereo in stratosfera a -50°C ed applicare sotto le sue ali delle celle FV infrarosse; allora la loro efficienza teorica sarebbe η=1-Tbassa/Talta ossia circa il 22% non male!

Ma non è finita qui; cosa succederebbe se esponessimo una giunzione PN ad una sorgente più fredda di quella ambiente?

L’idea (del tutto geniale!) venne qualche anno fa

e dunque c’è un’altra via per convertire energia con una giunzione PN; invece di ottenere energia elettrica esponendo la giunzione ad una sorgente più calda si può ottenere energia esponendola ad una più fredda!

E questa “sorgente negativa” c’è sempre, è lo spazio, il nero del fondo cielo la cui temperatura è molto bassa, almeno 50 o più sottozero se si considera la quota stratosferica; in questo caso la corrente andrebbe non dalla porzione n alla porzione p, ma viceversa dalla p alla n; la cosa è stata fatta notare qualche tempo fa, accludo il lavoro e recentemente hanno fatto una celletta del genere (efficienza ridicola al momento); se usata verso lo spazio esterno da t ambiente farebbe anche oltre 50W/mq, ma di fatto il limte è “vedere” la sorgente fredda attraverso la copertura atmosferica il che si può fare solo in ristrette zone di frequenza; nel pratico al massimo farebbe il 4%, ma l’idea è comunque eccezionale, harvesting che sfrutta il calore ambiente e il suo spontaneo raffreddamento; idea del tutto eccezionale secondo me.

Recentemente han provato a costruirne una e, al di là delle sciocchezze che possiate aver letto sui giornali, la cosa è fattibile, ma al momento non utile praticamente. Guardate solo la immagine qua sotto e capirete subito il concetto;

(ricordiamo sempre che la corrente convenzionale è di cariche positive, dunque quella elettronica va in direzione opposta).

Qualunque sorgente sia esposta al diodo PN si realizza comunque un flusso di corrente!

Siamo arrivati alla fine di una rapida galoppata nel reame delle idee base dell’elettrochimica, ma forse da un punto di vista che non avevate esplorato mai così. Spero.

La nostra guida è stato un principio scoperto oltre 200 anni fa. Alessandro Volta, da qualche parte ci guarda sornione.