Henry A. Bent (1926-2015): un chimico poco noto− Parte II

In evidenza

Rinaldo Cervellati

Henry A. Bent, “il professore che ha provato come la chimica può essere divertente” [1], nella sua lunga carriera di docente e ricercatore ha pubblicato più di 60 articoli a carattere prevalentemente didattico sul Journal of Chemical Education, dal 1960 al 2007. Gli argomenti sono fra i più disparati: dall’analisi dei concetti e alla loro proponibilità nell’insegnamento scolastico, dalla convinzione che la chimica è un linguaggio alle sue proposte di esperimenti dimostrativi per studenti e un pubblico più vasto, alle recensioni di libri di testo. Illustrare in poco spazio questa incredibile mole (è il caso di usare questo termine) di lavoro è praticamente una “mission impossible”. Ci proverò scegliendo due contributi, il primo riguardante le fiamme, il secondo sul concetto di orbitale.

Bent e le fiamme

Bent e le fiamme

Nel primo dei due, intitolato Flames: A Demonstration Lecture for Young Students and General Audiences[1], l’autore si propone di mostrare come con materiali di uso comune (zucchero, acqua, bicarbonato, aceto, candela, più una striscia di magnesio) si può capire di cosa si occupa la chimica e anche iniziare a comprenderne il linguaggio [2].

Bent dice:

Bent e le fiamme

Lasciatemi però spiegare dapprima la differenza fra fisica e chimica.

La fisica è la scienza delle proprietà generali della materia – la gravitazione universale, per esempio. Lascio cadere questo fiammifero. Questa è fisica. La distanza di caduta s è proporzionale al quadrato del tempo di caduta t. La distanza e il tempo sono concetti familiari. Ora sfrego il fiammifero. Una fiamma! Calore e luce. È illuminante! Questa è chimica. La chimica, vorrei dire, è più spettacolare della fisica. La chimica è la scienza delle proprietà particolari della materia, l’infiammabilità per esempio. C’è molto di completamente nuovo nelle trasformazioni chimiche della materia. [2, p. 151]

Bent invita quindi il pubblico a guardare la fiamma di una candela[2].

L’incandescenza della candela proviene dalla presenza nelle parti luminose della fiamma di particelle calde e solide. Possiamo raccoglierle con una spatola. A temperatura ambiente sono nere. Le chiamiamo fuliggine. È carbonio quasi puro, uno degli elementi chimici. Sopra la parte incandescente della fiamma, la fuliggine calda viene ossidata dall’ossigeno dell’aria formando un gas invisibile, il biossido di carbonio. I chimici scrivono:

C(s) + O2(g) → CO2(g) p

Possiamo dimostrare la presenza di biossido di carbonio nei prodotti finali della combustione della candela raccogliendoli in un pallone rovesciato. Poi aggiungiamo una soluzione di idrossido di calcio, comunemente chiamata calce, e scuotiamo. L’acqua di calce diventa presto color bianco latteo. Il precipitato bianco è carbonato di calcio, CaCO3. Il carbonato di calcio è il componente principale del calcare. Il calcare costituisce la maggior parte di molte delle nostre montagne.

La cera di candela è costituita da sostanze che sono principalmente composti del carbonio e dell’idrogeno. Il calore della fiamma della candela fonde la cera. Ulteriore calore vaporizza la cera dalla sporgenza. Infine, il calore trasforma le molecole del vapore di cera in carbonio e piccole molecole contenenti carbonio e idrogeno. Tali intermedi sono infine ossidati dall’ossigeno dell’aria sovrastante in anidride carbonica e acqua. [2, p. 152]

Bent continua a usare la candela in questo modo: un pezzo di cera viene posto in un becher che viene riscaldato con una fiamma esterna:

La cera fonde rapidamente in un liquido incolore. Il liquido comincia a fumare. Nelle pareti superiori fredde del becher parte del vapore si condensa in piccole particelle di cera liquida e solida. Continuando il riscaldamento, il vapore della cera, il fumo e l’aria formano una miscela combustibile, sviluppando una fiamma nel becher, che allontana momentaneamente il fumo. Ora abbiamo una fiamma continua: una fiamma di candela senza candela. Ma, a differenza della fiamma di candela, questa fiamma non è autosufficiente. Rimuovendo il calore ausiliario, la fiamma si spegne. [2, p. 152]

La dimostrazione prosegue:

Guardiamo ora cosa succede se spruzziamo un poco di acqua liquida con uno spruzzatore sulla cera nel becher. Il fuoco non si spegne ma si disperde in tanti fuocherelli appena l’acqua ha toccato il grasso. Le gocce d’acqua si sono messe a bollire trasformandosi in vapore spruzzando intorno goccioline di grasso infiammabili ravvivando il fuoco. Si tratta di “iniezione di carburante per generazione di vapore”. Un processo largamente sfruttato nell’industria. Non è certo il modo per allontanare l’ossigeno molecolare dal grasso caldo. Un panno umido sopra il becher avrebbe funzionato meglio.[2, p. 152].

A questo punto Bent spiega, con esempi pratici come l’aumento di contatto fra due o più corpi favorisce il verificarsi di trasformazioni chimiche:

Gran parte della moderna civiltà-scientifica, industriale, e tecnologica, deriva dal riconoscimento chimico che le molecole per reagire devono prima collidere, urtarsi.

Si passa quindi alle fiamme degli idrocarburi della serie del metano ma Bent inizia spiegando che le singole molecole della cera di candela contengono circa 18 atomi di carbonio, legati fra loro in catene a zig-zag.

Le molecole del polietilene dello spruzzatore contengono migliaia di atomi di carbonio, ciascuno legato ad atomi di idrogeno. È anche combustibile, vedete… Andando a pesi molecolari inferiori, otteniamo liquidi come il kerosene. Il cherosene, come la candela, non è molto volatile. Ha un valore relativamente alto di punto di infiammabilità. Possiamo costruire un fiammifero con il kerosene, ma non provate con la benzina!

L’idrocarburo più semplice è CH4, chiamato metano o gas naturale. È il gas per cui è stato costruito il bruciatore Bunsen nel quale entra un flusso del gas. Premesso che dalla base del bruciatore si può regolare la quantità d’aria che si mescola col gas, se si lascia che tutta l’aria entri, il metano brucia con una fiamma molto calda e relativamente poco luminosa, come quella che abbiamo visto con l’accendino a propano (a destra in figura). Bloccando l’ingresso dell’aria, il metano brucia con fiamma meno calda e luminosa, simile a quella della candela. Evidentemente, in queste condizioni si forma una certa quantità di fuliggine (a sinistra in figura) [2, p.152-153].

Fiamme bunsen

Bent mostra ora le fiamme prodotte dalla combustione di acetilene, alcol isopropilico e zucchero, facendo notare che tutte le sostanze usate contengono carbonio e idrogeno e le fiamme sono causate dalla reazione chimica con l’ossigeno dell’aria.

La combustione dello zucchero ha portato a una massa nera di carbonio in fondo alla provetta e a goccioline di acqua di condensa nella parte superiore. Introduce il termine carboidrati.

A questo punto proverà a bruciare separatamente carbonio e idrogeno.

Il semplice riscaldamento della provetta contenente il carbonio mostra che la sua ossidazione è molto lenta. Dobbiamo fornire più ossigeno al carbonio. Facciamo scorrere l’ossigeno nella provetta attraverso un tubo di vetro collegato a una bombola di ossigeno. È spettacolare! È la reazione di C + O2, solo con ossigeno puro, piuttosto che in miscela con aria. Il carbonio sta ora bruciando con un colore rosso fuoco. La provetta si è deformata ma non si è rotta. Alla fine è pulitissima, tutto il carbonio ha reagito. [2, p. 153]

Lampadine Edison a filamenti di carbonio

L’idrogeno si ottiene facilmente, basta avere un opportuno metallo e una soluzione acquosa di un acido forte, per esempio zinco e acido cloridrico. Mescoliamoli:

Si ottiene una massa frizzante, il metallo si scioglie e si sviluppano bollicine di un gas incolore e inodore, il gas più leggero conosciuto, l’idrogeno. Possiamo raccoglierne un poco in un bicchiere capovolto. Nel frattempo, riempiamo un piccolo palloncino con idrogeno proveniente da una bombola, e poi avviciniamo un fiammifero. Boom! Piccola esplosione e luce. Chiaramente anche l’idrogeno ha un’alta affinità per l’ossigeno! I chimici scrivono

H2(g) + 1/2O2(g) ® H2O(g)

La luminosità che abbiamo notato è probabilmente dovuta in gran parte alla polvere che impregna i palloncini per impedire di attaccarsi a se stessi o ad altri. La polvere riscaldata dall’esplosione della miscela idrogeno-ossigeno diventa luminosa. L’idrogeno puro brucia in ossigeno con una fiamma quasi incolore, come si vede se accendiamo la miscela idrogeno-aria nel becher dove avevamo raccolto un po’ di idrogeno. E che cosa si è depositato nelle pareti più fredde del becher? Sembra una rugiada fine. È acqua liquida. Come indicato dalla nostra ultima equazione, l’acqua è l’unico prodotto della combustione dell’idrogeno nell’ossigeno.[2, p. 153].

Bent passa poi a mostrare la reazione fra un pezzettino di potassio metallico e acqua tracciata con poche gocce di fenolftaleina. Fa avvenire la reazione sia in un becher sia in una capsula Petri posta su una lavagna luminosa:

In entrambi i casi si nota una reazione violenta, il pezzetto di potassio si incendia girando vorticosamente sulla superficie dell’acqua che si colora in viola, segno che è diventata basica. I chimici scrivono:

2K(s) + H2O(l) ® H2(g) + 2KOH(aq)

Infine il potassio sparisce del tutto.

Il potassio brucia in acqua

Nella capsula Petri il calore della lavagna luminosa fa rapidamente evaporare l’acqua lasciando un residuo bianco di idrossido di potassio.[2, p. 154].

Scaldiamo un sottile nastro di magnesio, esso brucia in aria rapidissimamente e con una straordinaria brillantezza formando una polvere bianca chiamata ossido di magnesio. I chimici scrivono:

2Mg(s) + O2(g) ® 2MgO(s)

Questo fenomeno è stato ampiamente sfruttato nei flash delle macchine fotografiche.

Lampo di magnesio

Dagli effetti provocati dalla combustione del magnesio si potrebbe pensare che esso abbia un’affinità per l’ossigeno maggiore rispetto al carbonio e all’idrogeno.[2, p. 154].

Per verificare l’ipotesi, Bent fa un ulteriore esperimento.

Mettiamo un po’ acqua a bollire in un becher. Il vapore eliminerà tutta l’aria quindi ora sarà pieno di molecole di H2O. Un fiammifero acceso immerso in questo vapore si spegne immediatamente. Guardiamo cosa fa il magnesio. Sorpresa! Il magnesio brucia ancora più vigorosamente nel vapore acqueo che nell’aria! In aria solo un quinto delle molecole contiene ossigeno. Nel vapore tutte le molecole contengono ossigeno. I chimici scrivono:

Mg(s) + H2O(g) ® H2(g) + MgO(s)

L’ossido di magnesio non è molto solubile in acqua. Però con l’aggiunta di qualche goccia di fenolftaleina diventa rosa. Questo è caratteristico delle soluzioni di ossidi metallici, essi formano idrossidi che neutralizzano gli acidi. Una sospensione di idrossido di magnesio in acqua si chiama latte di magnesia e viene usato per combattere l’acidità di stomaco. [2, p. 154]

Per controllare se il magnesio è in grado di sottrarre ossigeno al carbonio serve una sorgente di biossido di carbonio. Si può facilmente ottenere facendo reagire il carbonato di calcio con acido cloridrico oppure, più semplicemente bicarbonato di sodio con aceto.

L’aceto è una soluzione di acido acetico, mettiamone un poco in un becher e aggiungiamo il bicarbonato, l’anidride carbonica che si forma è più densa dell’aria e tende a concentrarsi nel fondo del becher. Un fiammifero acceso immerso in CO2 si spegne subito. E il magnesio? Il magnesio brucia nel biossido di carbonio. Si forma lo stesso ossido bianco insieme a chiazze nere. Come la fuliggine queste sono formate da carbonio. I chimici scrivono:

2Mg(s) + CO2(g) ® 2MgO(s) + C(s)

Ecco il motivo per cui non si possono spegnere gli incendi da magnesio con acqua o anidride carbonica. Se ne sono accorti i britannici durante la battaglia delle Isole Falkland. Alcune navi britanniche avevano sovrastrutture in leghe leggere contenenti magnesio e altri metalli che hanno affinità per l’ossigeno. Quando una delle navi è stata colpita da un missile, le sovrastrutture si sono incendiate bruciando sul ponte producendo più danni del missile stesso. [2, p. 154]

Il secondo contributo, del 1984, è intitolato Should Orbitals be X-Rated in Beginning Chemistry Courses? [3]

Bent affida inizialmente la risposta a Linus Pauling, definendolo, a ragione, “the father of the mathematical theory of orbitals for molecules”:

Non vedo alcun motivo per menzionare gli orbitali molecolari in un corso iniziale in chimica, scrive Linus Pauling in un recente numero di The Science Teacher [4]. Gli orbitali molecolari hanno un valore speciale nella discussione degli stati eccitati delle molecole, continua il padre della teoria matematica degli orbitali molecolari, ma sono piuttosto fuori luogo in un testo elementare di chimica.

Scrive Bent:

È vero tuttavia che l’apprendimento passivo e la ripetizione delle proprietà geometriche degli orbitali ibridi danno agli studenti la sicurezza di partecipare ad un’attività sofisticata con regole definite e facilmente memorizzabili. Dà agli insegnanti la sicurezza di fare domande con risposte definite e facilmente classificabili. Inoltre, permette a studenti e insegnanti di non insistere per avere un insegnamento pratico in laboratorio evitando le difficoltà di preparare da un lato e valutare dall’altro esercitazioni di laboratorio. Sicuramente, taglia i costi della scuola. Ma a quale prezzo? A costo di non sapere come funziona la scienza. E continua:

È stato detto che l’educazione è ciò che si ricorda dopo che tutto ciò che si è imparato è stato dimenticato. Quindi, come sono educati i nostri studenti di chimica? Che cosa ricordano dopo che tutto quello che gli è stato detto sugli orbitali è stato dimenticato? Che la chimica è un mistero, da memorizzare? Il problema non è lì. Gli orbitali sono il paradigma attuale. Il problema è come ci si arriva. Il gioco degli orbitali, per parafrasare Pauli, non è nemmeno sbagliato. È un gioco, tutto lì. Ma non è il gioco della scienza. La regola suprema, la regola generale, la regola del gioco, è assente.[4, p. 421].

Questa regola o Regola della Restrizione e stata enunciata da Lavoisier[3]:

Nel cominciare lo studio [o la presentazione] di una scienza fisica, ha scritto Lavoisier, non dobbiamo formulare [o anticipare] nessuna idea, ma quali sono le conseguenze e gli effetti immediati di un esperimento o una osservazione [5].

La regola di restrizione di Lavoisier è il regno sovrano della scienza. È la regola del buon senso di non saltare a conclusioni prima di conoscere i fatti. È stato solo attenendosi a questa regola che sono state formulate la teoria della termodinamica, della relatività di Einstein, della meccanica quantistica di Heisenberg, dell’operativismo di Bridgman.

Ma, prosegue Bent, la regola di Lavoisier è una regola difficile da giocare. La scienza (e l’insegnamento scientifico) non sono affatto facili.

Purtroppo la popolarità della volgarizzazione degli orbitali nel corso di chimica nei licei dipende anche dai contenuti del syllabus e dei test previsti dagli Advanced Placement Exams il cui superamento è richiesto da molti College e Università. Scrive Bent:

Il gioco di raccontare e ripetere piace tanto a insegnanti e studenti perché permette di ottenere voti alti agli esami. Il punteggio di quattro o cinque negli esami AP può essere dovuto all’esposizione delle regole per la formazione di orbitali, purtroppo nella mente di molti studenti questo può essere il loro uso principale. Insiste Bent:

L’adesione rigorosa alla Regola di Lavoisier richiede che i fatti siano esposti in modo induttivo, per catturare le idee, non di formulare ipotesi in modo meramente deduttivo.

Per esempio, c’è un solo isomero con formula molecolare CH2C12, da questo fatto i chimici hanno supposto che l’atomo di carbonio ha una struttura tetraedrica. Questa supposizione, basata sui fatti, ha dato luogo alla branca della stereochimica.

Solo molto più tardi fu riportato da Pauling e Slater, che la più semplice descrizione delle valenze tetraedricamente dirette dell’atomo di carbonio in termini di armoniche sferiche centrate su esso potevano essere interpretate da orbitali ibridi sp3. L’ibridazione è conseguente ai fatti, non i fatti dall’ibridazione.[4, p. 422]

Dopo altri esempi, Bent conclude:

È un fatto che gli studenti arrivano al college con una scarsa conoscenza della chimica descrittiva. Con riluttanza, il Comitato per la Formazione Professionale (CPT) dell’American Chemical Society ha raccomandato una maggior flessibilità nei programmi dei corsi di chimica di base valorizzando gli argomenti di chimica descrittiva, istituendo eventualmente corsi avanzati per approfondimenti.

Se la raccomandazione fosse accolta, dice Bent, ci sarebbero meno ripetizioni. Infatti, tutto il discorso sui moderni “orbitali molecolari” (e anche sulla termodinamica formale), viene generalmente ripetuto all’università. [4, 422]

Non mi sembra che la raccomandazione del CPT e le considerazioni di Bent siano state recepite, voi che ne dite?

 

Bibliografia

[1]”Pitt professor proved chemistry can be fun”, nel titolo del necrologio sulla scomparsa di Bent pubblicato dalla Pittsburg Post-Gazette l’11 gennaio 2015 a firma Jill Harkins.

http://www.post-gazette.com/news/obituaries/2015/01/11/Pitt-professor-proved-that-science-can-be-fun/stories/201501080119

[2] H.A. Bent, Flames: A Demonstration Lecture for Young Students and General Audiences, J. Chem. Educ., 1986, 63, 151-155

[3] H.A. Bent, Should Orbitals be X-Rated in Beginning Chemistry Courses?, J. Chem. Educ., 1984, 61, 421-423

[4] L. Pauling, Throwing the Book at Elementary Chemistry, The Science Teacher, 1983, 50, 25-29

[5] A.L. Lavoisier, Traité Elémentaire de Chimie, Couchet, Paris, 1789, pp.vi e viii, scaricabile da

http://www.labirintoermetico.com/01Alchimia/Lavoisier_A_L_de_Traite_elementaire_de_chimie(1789).pdf

 

 

 

 

 

 

[1] L’articolo è basato su una conferenza dimostrativa tenuta alla Gonzaga University Spokane, Washington, 7 marzo 1985.

[2] L’osservazione e la descrizione della fiamma di candela è un fenomeno molto utilizzato nelle dimostrazioni. Per molti anni Faraday ha tenuto una serie di Christmas Lectures per un pubblico giovane su “La storia chimica di una candela” [2, p.151].

[3] In realtà Lavoisier non ha mai chiamato Regola il suo pensiero espresso nella citazione [5] che invece, più argomentato, si trova precisamente dove l’ha trovato Bent nella traduzione inglese del famoso Traité Elémentaire de Chimie (Elements of Chemistry, Dover, 1965).

Henry A. Bent (1926-2015): un chimico poco noto− Parte I

In evidenza

Rinaldo Cervellati

Conoscevo il nome di Bent per alcuni suoi scritti provocatori sul Journal of Chemical Education, ad es. Should the Mole Concept be X-Rated? (1985, 62, 59) o Should Atomic Orbital Be X-Rated in Beginning Chemistry Courses ? (1984, 61, 421-423) in cui la domanda è: dovrebbe il tale concetto (mole, orbitali…) essere vietato ai minori? La curiosità di saperne di più mi è venuta quando, lavorando al post sulla teoria del legame di valenza, mi sono imbattuto nella “regola di Bent” riguardante l’ibridizzazione degli orbitali. Anzitutto un poco di biografia.

Henry Albert Bent (Cambridge, MA 1926 – Pittsburgh, PA 2015), figlio di Henry E. Bent professore di chimica all’Università di Pittsburgh, ereditò dal padre la passione per la chimica. Completò il B.Sc in chimica fisica all’Oberlin College (contea di Lorain, Ohio). Nella seconda Guerra Mondiale Bent ha servito in Marina come tecnico radar.

Henry A. Bent

Ottenne il Ph.D. in Chimica nel 1952 all’Università di Berkeley, in un ambiente vivace e stimolante, dove si proseguivano le ricerche sviluppate dal Gruppo del professor G.N. Lewis, scomparso nel 1949. La dissertazione di dottorato ebbe come argomento la decomposizione del nitrato d’ammonio fuso.

Prima del suo arrivo in Minnesota nel 1958, era stato professore di chimica fisica all’università del Connecticut.

All’Università del Minnesota, è stato professore di chimica inorganica fino al 1969, per poi passare alla North Carolina State University a Raleigh e, infine nel 1990 all’Università di Pittsburgh (PA). Ritiratosi nel 1992, ha continuato a interessarsi attivamente di temi e problemi di didattica e promozione della chimica; come direttore del programma Van Outreach effettuò una serie di esperimenti dimostrativi per gli studenti di tutta la zona di Pittsburgh.

I suoi principali interessi di ricerca sono stati la termodinamica, la teoria del legame chimico e la didattica della chimica, tutti argomenti molto sentiti dal gruppo di Berkeley, come ricordato più volte in altri post.

Vignetta satirica (1868) su G. Hirn1

Per quanto riguarda la termodinamica, nel 1962, Bent propose un approccio di analisi globale dell’entropia concepito per valutare la spontaneità dei processi chimico-fisici-chimici[1]. Nel 1977, nel contesto della termodinamica filosofica[1], Bent ha coniato la frase “etica dell’entropia personale”.

In un articolo, suggerisce che per superare le crisi energetiche bisogna anzitutto essere etici negli aspetti energetici della vita basati sulla conoscenza della seconda legge della termodinamica. In particolare, al posto di una politica energetica nazionale, Bent afferma:

“What we need is a personal entropy ethic.” (“Quello di cui abbiamo bisogno è un’etica personale di entropia”) [2].

Nello stesso 1977, Bent condusse i “Workshops su termodinamica, arte, poesia e ambiente” per la National Science Foundation, discutendo con gli studenti, fra l’altro, una critica dell’asserzione “non creare inutilmente Entropia”.

Nella teoria del legame chimico il suo principale contributo è stato l’aver dimostrato empiricamente che per interpretare la struttura e le proprietà delle molecole degli elementi della prima riga della Tavola Periodica si doveva ammettere l’ineguaglianza degli orbitali ibridi dell’atomo centrale legato ad atomi o gruppi diversi fra loro e aver correlato questa disuguaglianza all’elettronegatività dei legandi (“regola” di Bent). Di ciò ci occuperemo con qualche dettaglio in questo post.

Riguardo all’insegnamento e alla didattica, il suo entusiasmo per la chimica lo ha condotto a pubblicare decine di articoli e note sul J. Chem. Educ. E’ stato un insegnante molto popolare trattando argomenti che vanno dalle fiamme e dalle esplosioni ai fondamenti della scienza e all’arte astratta. Particolare insistenza ha posto su insegnare chimica attraverso esperimenti e dimostrazioni pratiche. Per questo è stato insignito di numerosi premi per l’educazione e la formazione chimica.

L’entusiasmo e l’amore per gli atomi e le molecole furono una forza trainante nel lavoro e nella vita di Bent. La sua lunga carriera di chimico e insegnante è culminata in idee non convenzionali, come quella di collocare l’elio sul berillio nella tavola periodica, l’utilizzo di modelli di sfera di valenza per simulare i profili di densità elettronica nelle molecole, la rivalutazione degli esperimenti dimostrativi nell’insegnamento.

La “regola” di Bent

Nella versione originale della teoria del legame di valenza [3], si ipotizza che gli elettroni di valenza degli elementi del blocco p siano ibridizzati spn, con n = 1, 2 o 3. Inoltre, si assume che gli orbitali ibridi sono tutti equivalenti (cioè gli n+1orbitali spn hanno lo stesso carattere p). I risultati di quest’approccio sono in generale soddisfacenti, ma possono essere migliorati ammettendo che gli orbitali ibridizzati possono avere carattere ineguale, cioè non essere equivalenti.

Nel fascicolo di giugno 1961, la rivista Chemical Reviews pubblicò un lungo lavoro intitolato: “An Appraisal of Valence-Bond Structures and Hybridization in Compounds of the First-Row Elements” [4], in cui Bent illustrava in dettaglio la sua teoria, peraltro già conosciuta come “regola di Bent”, come si vedrà più avanti[2].

La regola di Bent fornisce un’indicazione precisa su come questi orbitali non equivalenti dovrebbero essere costruiti [4].

Secondo Bent:

Atomic s character concentrates in orbitals directed toward electropositive substituents. Or, atomic p character concentrates in orbitals directed toward electronegative substituents.

([4], p. 291), ovvero:

L’atomo centrale legato a più gruppi esterni in una molecola, si ibridizzerà in modo che orbitali con un maggior carattere s siano diretti verso gruppi elettropositivi, mentre orbitali con maggior carattere p saranno diretti verso i gruppi più elettronegativi.

Rimuovendo l’ipotesi che tutti gli orbitali ibridi spn siano equivalenti, Bent ottenne migliori interpretazioni di proprietà come la geometria molecolare (angoli e lunghezze di legame), l’energia di legame, l’effetto induttivo e le costanti di accoppiamento J 1H−13C in spettrometria NMR.

Come esempio prendiamo gli angoli di legame:

Consideriamo dapprima gli angoli di legame nelle tre molecole metano, etene ed etino:

e tenendo conto che il carbonio ibridizza sp3 nella prima, sp2 nella seconda e sp nella terza appare chiaro che all’aumentare del carattere p degli orbitali ibridi diminuisce l’angolo di legame.

Nel suo lavoro, Bent propone, per gli angoli, il seguente esempio:

In queste quattro molecole (etere dimetilico, alcol metilico, acqua, difluoruro di ossigeno), l’atomo di ossigeno centrale, tenendo conto dei doppietti elettronici non condivisi è ibridizzato sp3, l’elettronegatività dei sostituenti aumenta nell’ordine F > H > CH3[3] sicché in base all’ipotesi di Bent ci si deve aspettare che FOF < HOH < HOCH3 < H3COCH3, infatti all’aumentare dell’elettronegatività del sostituente deve corrispondere un aumento del carattere p dell’ibrido verso il sostituente stesso e di conseguenza diminuire l’angolo di legame come riscontrato sperimentalmente (FOF(103,8)<HOH(104,5°)<HOCH3(107-109°)< H3COCH3(111°)) [4, p.288].

Scrive Bent:

Spesso è suggestivo considerare gli elettroni non condivisi come elettroni in un legame con un atomo di elettronegatività molto bassa (zero). Questa visione porta a supporre che i gruppi elettronegativi influenzino l’ibridazione atomica e, per inferenza… proprietà molecolari come angoli di legame, lunghezze di legame, costanti di accoppiamento C13 e costanti induttive. (1961, p. 287)

Nel prevedere l’angolo di legame dell’acqua, la regola di Bent suggerisce che gli orbitali ibridi con maggior carattere s dovrebbero essere diretti verso le coppie solitarie, meno elettronegative, lasciando così orbitali con un maggior carattere p orientati verso gli idrogeni.

Questo aumentato carattere p in quegli orbitali diminuisce l’angolo di legame tra di essi rispetto al valore tetraedrico (109,5). La stessa logica può essere applicata all’ammoniaca, l’altro esempio canonico di questo fenomeno.

La “regola” può essere generalizzata anche agli elementi del blocco d.

Di orbitali ibridi non equivalenti si trova un primo cenno nel libro di Charles A. Coulson [6, p. 206-7] che in seguito svilupperà gli aspetti formali della regola di Bent (v. Formal Theory section at: https://en.wikipedia.org/wiki/Bent%27s_rule).

In una breve nota, comparsa nel 1982, Bent racconta la storia della sua regola [5]:

Nel 1955, in qualità di assistente ricercatore presso l’Università del Minnesota, lavoravo ad un progetto sugli spettri infrarossi delle fiamme dei propellenti per razzi, e un forte assorbimento non identificato mi portò a scoprire e a identificare la struttura di un nuovo dimero di N2O4. Ne nacque una crescente curiosità sulle relazioni fra struttura e proprietà molecolari.

Già dopo la Prima Guerra, le implicazioni delle informazioni provenienti dalla diffrazione dei raggi X e degli elettroni sulla teoria strutturale erano state interpretate da Pauling nel suo classico libro La Natura del Legame Chimico… Dopo la Seconda Guerra Mondiale, gli impieghi in tempo di pace della tecnologia a microonde del radar [spettroscopia rotazionale a microonde] hanno reso possibile la determinazione delle strutture molecolari con maggiore precisione. Nel 1956 mi sembrava che i risultati sperimentali non si accordassero con la teoria degli orbitali ibridi convenzionale. Ho quindi trovato la prova per la tesi che l’ibridazione orbitale ha effetto non solo sugli angoli di legame, ma anche sui momenti dipolari, sulle costanti induttive e quelle di accoppiamento, sulle costanti del campo di forza, sulle energie di dissociazione e le lunghezze di legame. Gli effetti sono stati riassunti in una “regola”, talvolta citata come “regola di Bent”. Ho costruito la teoria in base alle ben note idee di G.N. Lewis e di Pauling, estendendo il concetto di elettronegatività…

Per diversi anni i miei lavori sulla “regola” sono stati rifiutati dal Journal of the American Chemical Society… Una serie di brevi articoli e note sono state pubblicate…. nel Journal of Chemical Physics*, prima che comparisse una review completa… sostenuta da un ampio numero di dati e da una linea di ragionamenti ben condivisa… Forse ho trovato una spiegazione fisica semplice, non mistica per il carattere s, tuttavia ancora prima di ciò che la regola può spiegare, sta il fatto che non è mai stata proposta da altri autori.[5, p. 22]

*Ho trovato alcune di queste note, si tratta di Letters to the Editor, le riporto nelle citazioni bibliografiche [7-9]

Infine, è il caso di ricordare che recentemente è stata provata la validità della teoria (io preferisco chiamarla così) di Bent su 75 tipi diversi di legami con atomi dei gruppi principali della Tavola Periodica [10].

Per le note biografiche mi sono servito delle seguenti fonti:

http://www.eoht.info/page/Henry+Bent

https://cse.umn.edu/news-feature/in-memoriam-henry-albert-bent/

http://www.post-gazette.com/news/obituaries/2015/01/11/Pitt-professor-proved-that-science-can-be-fun/stories/201501080119

http://garfield.library.upenn.edu/classics1982/A1982PE54500001.pdf

Bibliografia

[1] (a) H.A. Bent, The Second Law: an Introduction to Classical and Statistical Thermodynamics. Oxford University Press, 1965; (b) H. A. Bent, Haste Makes Waste: Pollution and Entropy, Chemistry, 1971, 44, 6-15.

[2] H. A. Bent, Entropy and the Energy Crisis, The Science Teacher, 1977, May, 25-30.

[3] (a) L. Pauling, The Nature of the Chemical Bond. Application of Results Obtained from the Quantum Mechanics and from a Theory of Paramagnetic Susceptibility to the Structure of Molecules, J. Am. Chem. Soc., 1931, 53, 1367-1400. (b) L. Pauling, The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry, Oxford University Press, London, 1939. Trad ital.: La natura del legame chimico, Franco Angeli, Milano, 2011 (ripubblicato, tradotto in italiano la prima volta dopo la Liberazione).

[4] H.A. Bent, An Appraisal of Valence-Bond Structures and Hybridization in Compounds of the First-Row Elements, Chem. Rev., 1961, 61, 275-311.

[5] Current Contents/Physical Chemical & Earth Sciences, n.37, September, 13, 1982, p. 22

[6] C.A. Coulson, La Valenza, Zanichelli, Bologna, 1964 (Trad. it. Sulla II Ed.Amer., 1961)

[7] H.A. Bent, Electronegativities from Comparison of Bond Lengths in AH and AH +, J. Chem. Phys., 1960, 33, 1258-1259

[8] H.A. Bent, Correlation of Bond Shortening by Electronegative Substituents with Orbital Hybridization, J. Chem. Phys., 1960, 33, 1259-1260.

[9] H.A. Bent, Bond Shortening by Electronegative Substituents, J. Chem. Phys., 1960, 33, 1260-

[10] I.V.Alabugin, S. Bresch, M. Manoharan, Hybridization Trends for Main Group Elements and Expanding the Bent’s Rule Beyond Carbon: More than Electronegativity, J. Phys. Chem. A 2014, 118, 3663– 3677.

[1]La termodinamica filosofica studia le implicazioni termodinamiche sul modo di vivere (etica), quali tipi di oggetti esistono e quali sono le loro essenze naturali (metafisica); ricerca del significato della conoscenza (epistemologia). Ricerca i corretti principi di ragionamento (logica). Può essere datata dal 1869 anno di pubblicazione del libro Philosophical Implications of Thermodynamics, del fisico francese Gustave Hirn (1815-1890), http://www.eoht.info/page/Philosophical+thermodynamics

[2] Vale la pena notare che nel numero di dicembre 1960 del J. Chem. Educ. era stato pubblicato un articolo di Bent molto simile a quello comparso su Chem. Rev. (H.A. Bent, Distribution of Atomic s-Character in Molecules and Its Chemical Implications, J. Chem. Educ., 1960, 37, 616-624.)

[3] Nel suo lavoro originale, Bent, considera che l’elettronegatività del gruppo metile sia inferiore a quella dell’atomo di idrogeno perché la sostituzione del metile riduce le costanti di dissociazione dell’acido formico e dell’acido acetico.