La Metanogenesi catalitica sui pianeti rocciosi

In evidenza

Diego Tesauro.

La maggior parte dell’opinione pubblica conosce il metano come fonte energetica, ma nell’universo sicuramente ha una funzione ancora più importante.

E’ infatti il più semplice composto organico sul quale sono basate diverse ipotesi di meccanismi di reazione per la formazione di molecole organiche complesse e delle biomolecole.

Inoltre Il metano è uno dei composti più diffusi dell’universo, come intuitivamente è logico supporre, considerando che la maggior parte dell’universo è costituito da idrogeno (attualmente circa il 74%) ed il carbonio, prodotto nei nuclei delle stelle giganti rosse per fusione sintetica di 3 nuclei di elio, è il quarto elemento per abbondanza (4.6 %) dopo elio ed ossigeno.

Si forma nelle zone periferiche dei sistemi planetari e infatti lo ritroviamo nei giganti gassosi del sistema solare da Giove a Saturno, ma è particolarmente abbondante nelle atmosfere di Urano e Nettuno. Non è presente invece nelle atmosfere dei pianeti terrestri per la loro vicinanza al sole in quanto la radiazione solare, nelle prime fasi dell’evoluzione del sistema planetario, ha energia sufficiente per rompere i legami chimici come il legame C-H. Allora dove e perché lo ritroviamo nelle zone interne del nostro sistema planetario?

Cratere Gale dove opera il rover Curiosity dal 2012

Sulla Terra attualmente il metano ha pressoché totale origine biologica derivando da processi di digestione anaerobica delle sostanze organiche da parte dei batteri. Ma sugli altri pianeti rocciosi e in particolare su Marte, attualmente c’è metano? Recenti misurazioni in situ di CH4 su Marte nel cratere Gale1 da parte del rover della NASA Curiosity ne ha rilevato una concentrazione di fondo di ~ 0,7 parti per miliardo (ppb) ma ha anche riportato variazioni significative nella sua concentrazione, con picchi dieci volte superiori rilevati in quattro occasioni per un periodo di due mesi legata alla stagionalità (Marte a causa dell’inclinazione dell’asse di rotazione sul piano orbitale di 25° presenta l’alternanza delle stagioni nei due emisferi come la Terra).

Questa scoperta induce ad ipotizzare una possibile sintesi abiotica di CH4 come gas riducente in un’atmosfera ricca di CO2 naturale, come è l’attuale atmosfera marziana e come lo era la Terra in passato. Quindi processi attualmente in corso su Marte potrebbero essere stati attivi sulla Terra primordiale.

Entrambi i pianeti hanno la possibilità di utilizzare acqua come fonte di idrogeno e furono esposti nelle prime fasi ad un significativo flusso di radiazione ultravioletta. Basandosi su modelli fotochimici e sull’attuale comprensione della composizione dell’atmosfera marziana, il metano ha una vita chimica di 300-600 anni, che è, su scala geologica, un periodo molto, ma molto breve. Ciò implica che ci deve essere una fonte attualmente attiva su Marte. Hu et al.2 hanno formulato tre ipotesi sull’origine del metano su Marte:

  • La regolite nel cratere Gale assorbe CH4 quando è secca e rilascia CH4 nella deliquescenza durante l’inverno.
  • I microrganismi convertono la materia organica nel terreno in CH4. Tuttavia, questo scenario suppone l’esistenza di una vita esistente su Marte, e fino ad oggi non è stata trovato alcun indizio.
  • Le falde acquifere sotterranee profonde generano emissioni esplosive di CH4.

A queste ipotesi si è aggiunta una quarta formulata da Shkrob et al. 3 basata su una complessa chimica del carbonio governata dalla radiazione ultravioletta che porta alla formazione di metano e monossido di carbonio dalla riduzione del biossido di carbonio. Questa ipotesi è stata ulteriormente sviluppata recentemente in un articolo pubblicato su Nature Astronomy4 mediante esperimenti condotti in laboratorio simulando condizioni presenti su Marte o sulla Terra primordiale.

Il rover Curiosity su Marte. Lanciato da Cape Canaveral il 26 novembre 2011 è « ammartato » il 6 agosto 2012

Pertanto Marte potrebbe essere contemporaneamente un “fotoreattore” di dimensioni planetarie che decompone molecole di materia prima carbossilata che producono CH4 e un pianeta “fotosintetico”, in cui il metano viene generato dal biossido di carbonio su superfici catalitiche.
La sintesi di CH4 da CO2 è influenzata dalle quantità di H2O e di CO2 adsorbite sulle superficie fotocataliche del catalizzatore minerale in presenza di una sufficiente insolazione. Questo modello può essere valido anche per la Terra primordiale, per Titano, il più grande satellite di Saturno ed unico ad essere dotato di un’atmosfera ampiamente costituita da metano (https://ilblogdellasci.wordpress.com/2015/01/25/chimica-da-titano/ed per altri pianeti di tipo roccioso presenti nell’universo.

Marte infatti attualmente non è schermato come la Terra contro la radiazione ultravioletta (come è noto il nostro pianeta possiede lo schermo dello strato dell’ozono, non presente su Marte) e quindi può essere considerato un laboratorio per questo tipo di reazioni. Questi studi hanno permesso di stabilire due importanti aspetti: il ruolo catalitico del minerale anatasio (un minerale costituito da TiO2) e della montmorillonite (un silicato di formula (Na,Ca)0,33(Al,Mg)2(Si4O10)(OH)2.n H2O), entrambi presenti su Marte, anche se al momento non è stata ancora determinata la loro quantità, ma anche sulla Terra. In particolare il biossido di titanio presente nell’anatasio svolge il ruolo di fotocatalizzatore ed un meccanismo di reazione attraverso il gliossale dimostrerebbe la contemporanea formazione in uguale quantità di CO e CH4 mentre per l’altro catalizzatore, non riscontrando la stessa quantità dei due gas, potrebbe intervenire un diverso meccanismo o un effetto dei radicali ossidrilici provenienti nell’acqua intrinsecamente in esso contenuta oppure una fotolisi del metano sulla sua superficie.

La montmorillonite è un minerale, un fillosilicato di alluminio e magnesio. Il nome deriva dalla località di Montmorillon, dipartimento della Vienne, in Francia, dove fu per la prima volta identificato.

Ma anche l’adsorbimento dell’acqua gioca un ruolo decisivo e spiegherebbe la stagionalità delle emissioni di metano che aumentano dalla primavera marziana fino alla fine dell’autunno. Altro aspetto fondamentale per questa ipotesi sintetica è il pH. In ambiente basico o neutro sulla superficie del minerale vengono legati degli ioni ossidrili (OH), mentre l’ambiente acido è in grado piuttosto di permettere l’adesione del biossido di carbonio e dell’acqua per cui la riduzione catalitica dei due minerali è indotta dall’acido cloridrico. L’acido cloridrico è effettivamente presente su Marte sul quale è attivo attualmente un ciclo del cloro proposto di recente da Catling et al. e confermato dalla presenza di ione perclorato5.

Questo modello pertanto oltre a spiegare l’attuale presenza di metano co-generato con il monossido di carbonio su Marte osservata da Curiosity, ha il pregio di interpretare la sua stagionalità. Inoltre può essere anche adattato alle condizioni iniziali della Terra. In questo caso è possibile anche dimostrare la formazione a partire da un’atmosfera riducente di CO2, N2, CH4 e CO di HCN, da cui, a seguito della sua polimerizzazione indotta dal bombardamento meteorico simulato dai laser, la formazioni delle nucleobasi del RNA (adenina, guanina, citosina e uracile) e del più semplice degli amminoacidi la glicina.

  • Webster, C. R. et al. Mars methane detection and variability at Gale crater. Science 347, 415–417 (2015).
  • Hu, R., Bloom, A. A., Gao, P., Miller, C. E. & Yung, Y. L. Hypotheses for near-surface exchange of methane on Mars. Astrobiology 16, 539–550 (2016).
  • Shkrob, I. A., et al. Photocatalytic decomposition of carboxylated molecules on light-exposed Martian regolith and its relation to methane production on Mars. Astrobiology 10, 425–436 (2010).
  • Civiš S. et al. The origin of methane and biomolecules from a CO2 cycle on terrestrial planets Nature Astronomy 1 721–726 (2017).
  • Catling, D. C. et al. Atmospheric origins of perchlorate on Mars and in the Atacama. Geophys. Res. Planets 115, E00E11 (2010).

Astrochimica: individuato ghiaccio sotto la superficie del pianeta nano Cerere

Rinaldo Cervellati

Il pianeta nano Cerere[1], che orbita nella fascia degli asteroidi tra Marte e Giove, ospita una grande quantità di ghiaccio sotto la superficie, afferma un team di scienziati guidati dal Dr. T.H. Prettyman del Science Planetary Institute nel corso del Convegno dell’American Geophysical Union il 15 dicembre scorso.[1]

fig-1-cerereIl ghiaccio, che probabilmente riempie i pori nel sottosuolo di roccia, si trova lì da miliardi di anni, confermando le previsioni fatte da alcuni astronomi 30 anni fa.

Thomas Prettyman

Thomas Prettyman

Gli scienziati hanno riferito questi e altri risultati raccolti dal veicolo spaziale Dawn[2] della National Aeronautics and Space Administration, in orbita attorno a Cerere, in una conferenza stampa il 15 dicembre scorso al convegno dell’American Geophysical Union a San Francisco.

Il veicolo spaziale è munito di uno spettrometro a neutroni e raggi gamma che fornisce informazioni sugli elementi che costituiscono la crosta del pianeta, tale strumento è stato già utilizzato nella missione Messenger che ha fornito informazioni su Mercurio. Uno schema semplificato del funzionamento dello spettrometro è mostrato in figura. In breve lo strumento misura il numero e l’energia dei neutroni e dei raggi gamma che raggiungono la sonda quando passa vicino al pianeta.

fig-3-spettrometro-a-neutroniI dati raccolti da Down nell’arco di cinque mesi hanno permesso una mappatura della composizione di Cerere rilevando la presenza di idrogeno anche alla profondità di appena un metro sotto la superficie del pianeta nano. Il ghiaccio è più concentrato ai poli di Ceres.

Norbert Schörghofer, uno scienziato della missione Dawn e astronomo presso l’Università delle Hawaii, ha infatti riferito che la sonda ha rilevato sacche di ghiaccio nei crateri permanentemente in ombra ai poli di Ceres, fenomeno che esiste anche su Mercurio e Luna [2].

fig-4-norbert-schorghofer

Norbert Schörghofer

Tutte le evidenze raccolte da Down stanno a indicare che un tempo Cerere aveva un oceano e che tracce di esso rimangono probabilmente ancora sotto la sua superficie ha detto Carol Raymond del Jet Propulsion Lab, vice ricercatore principale della missione.

fig-5-carol-raymond

Carol Raymond

Gli scienziati sono particolarmente interessati a corpi del sistema solare che possono contenere acqua allo stato liquido perché potrebbero essere ambienti in grado di ospitare la vita. Cerere, ha sostenuto Raymond, è probabilmente simile a Europa, una luna di Giove, o a Encelado, luna di Saturno, in termini di potenziale abitabilità.

Al convegno dell’American Geophysical Union è stata presentata un’altra ricerca, focalizzata su un corpo del sistema solare più vicino al nostro pianeta: Marte. Gli scienziati del Los Alamos National Laboratory hanno annunciato per la prima volta la scoperta di boro sulla superficie del pianeta rosso. La NASA ha individuato l’elemento in vene minerali di solfato di calcio. Se questo minerale è confrontabile con quello che si trova sulla Terra, ciò indicherebbe che molto tempo fa le temperature superficiali del pianeta erano 0-60 ° C, e che il terreno aveva un pH neutro-alcalino, in altre parole un ambiente abitabile.

Fonte: c&en Newsletters 21-12-2016

[1] T. Prettyman et al., Extensive water ice within Ceres’ aqueously altered regolith: Evidence from nuclear spectroscopy, Science  15 Dec 2016, DOI: 10.1126/science.aah6765

[2] T. Platz et al., Surface water-ice deposits in the northern shadowed regions of Ceres,

Nature Astronomy, 15 Dec 2016, DOI: 10.1038/s41550-016-0007

[1] Cerere è l’asteroide più grande della fascia principale del sistema solare, scoperto nel 1801, per mezzo secolo è stato considerato l’ottavo pianeta. Dal 2006 Cerere è l’unico asteroide del sistema solare interno considerato un pianeta nano, alla stregua di Plutone.

[2] La Missione Dawn è una missione basata su una sonda senza equipaggio sviluppata dalla NASA per raggiungere ed esaminare il pianeta nano Cerere e l’asteroide Vesta . Dawn è stata lanciata in settembre 2007 e ha raggiunto Cerere in marzo 2015.