Rinaldo Cervellati
Il manganese (Mn) è l’elemento n. 25 della Tavola Periodica. Non si trova libero in natura ma combinato in alcuni minerali, il più importante dei quali è la pirolusite, costituita essenzialmente da biossido di manganese (MnO2). Importante è anche la romanechite (ossidi di manganese e idrossido di bario), costituente principale dello psilomelano, che è un insieme di minerali.
Altri minerali di manganese economicamente importanti mostrano solitamente una stretta associazione con minerali di ferro.
Pirolusite
Diversi ossidi di manganese, ad esempio la pirolusite, abbondante in natura, furono usati come pigmenti sin dall’età della pietra. Le pitture rupestri di Lascaux (Francia), datate fra 30.000 e 24.000 anni fa, contengono pigmenti a base di manganese.
Pitture rupestri a Lascaux (Francia)
L’origine del nome manganese è alquanto complessa. Nell’antichità, due minerali neri provenienti dalla regione detta Magnesia (oggi situata in Grecia) erano entrambi chiamati magnes dal loro luogo di origine, ma avevano caratteristiche e proprietà molto diverse. Il magnes definito maschile di colore grigio scuro con venature rossastre attirava il ferro (si trattava del minerale di ferro ora noto come calamita o magnetite, da cui probabilmente l’origine del termine magnete). Il magnes detto femminile di colore nero non attraeva il ferro, ma era usato per colorare il vetro. Questo magnes femminile era la pirolusite. Né questo minerale né il manganese elementare sono magnetici.
Composti di manganese sono stati usati da vetrai egiziani e romani, sia per aggiungere sia per rimuovere il colore dal vetro. L’uso di questi composti come “sapone per vetrai” è proseguito nel Medioevo fino ai tempi moderni ed è evidente nel vetro trecentesco di Venezia.
Nel 16° secolo la pirolusite era chiamata manganesum dai vetrai, forse come concatenazione di due parole, poiché alchimisti e vetrai dovevano differenziare fra magnesia nigra (il minerale nero) e magnesia alba[1] (un minerale bianco, proveniente anche esso dalla Magnesia, utile anche nella produzione del vetro). Michele Mercati[2] chiamò manganesa la magnesia nigra, in seguito il metallo isolato da essa divenne noto come manganese (in tedesco: Mangan).
Nel 18° secolo diversi chimici, fra i quali Carl Wilhelm Scheele, identificarono importanti composti del manganese, come ad es. il permanganato di potassio, usato come antisettico, e scoprirono che facendo reagire il biossido di manganese con l’acido muriatico (acido cloridrico) si otteneva il cloro. Tutto ciò fece supporre che i composti del manganese dovessero contenere un nuovo elemento, ma il merito di averlo isolato per primo va allo svedese Johan Gottlieb Gahn[3] che lo ottenne arrostendo la pirolusite con carbone (in termini chimici riducendo il biossido di manganese con carbonio: MnO2 + C ® Mn +CO2).
Manganese metallico
Il manganese con le sue 1000 ppm (0.1% ca.) occupa il 12° posto per abbondanza fra gli elementi chimici nella crosta terrestre. Il suolo contiene 7-9000 ppm di manganese con una media di 440 ppm. L’acqua di mare ha solo 10 ppm di manganese e l’atmosfera ne contiene 0,01 μg/m3.
Le risorse terrestri sono grandi ma distribuite in modo irregolare. Circa l’80% delle riserve di manganese conosciute nel mondo si trovano in Sud Africa; altri importanti depositi sono in Ucraina, Australia, India, Cina, Gabon e Brasile.
Distribuzione delle risorse di manganese (minerali), 2006
Secondo la stima del 1978, il fondo oceanico conterrebbe 500 miliardi di tonnellate di noduli di manganese. I tentativi di trovare metodi economicamente validi per la raccolta di questi noduli furono abbandonati negli anni ’70.
In Sud Africa la maggior parte dei depositi identificati si trova vicino a Hotazel nella Provincia di Northern Cape, con una stima (2011) di 15 miliardi di tonnellate. Nel 2011 il Sudafrica ha prodotto 3,4 milioni di tonnellate di manganese, superando tutte le altre nazioni.
Il manganese metallico si ottiene ancor oggi per riduzione del suo diossido. Come riducente però non si usa più il carbone ma una miscela di gas idrogeno e monossido di carbonio che fornisce sia il calore necessario (il processo avviene a 850 °C) sia l’opportuno riducente. Il diossido di manganese si riduce a monossido (MnO), che viene raffreddato e opportunamente frantumato. Questo composto viene poi inviato a un reattore che riduce ulteriormente il monossido di manganese a manganese metallico per reazione con solfato ferroso in ambiente acido. Il rendimento del processo è del 92%.
Il metallo può essere ulteriormente purificato per via elettrolitica.
Il manganese è essenziale per la produzione di ferro e acciaio per le sue proprietà desolforanti, deossigenanti e leganti.
La produzione dell’acciaio e altre leghe ferrose assorbe attualmente dall’85% al 90% della produzione mondiale di manganese: fra le altre cose, il manganese è un componente chiave per gli acciai inossidabili a basso costo e per alcune leghe di alluminio di largo impiego.
Piatti e lastre in manganese sono utilizzati durante la costruzione o riparazione di un tipo di impianti di sabbiatura chiamati granigliatrici, dotati di motori elettrici collegati a speciali turbine che sparano graniglia metallica ad alta velocità sabbiando il pezzo. Il manganese è più resistente del ferro durante il processo di sabbiatura e risulta essenziale per la longevità dell’impianto.
Il manganese può assumere tutti gli stati di ossidazione da +1 a +7 sebbene i più comuni siano +2, +3, +4, +6 e +7. Agli stati di ossidazione più bassi funziona chimicamente come metallo formando ossidi basici (es. MnO), a quelli più alti funziona da non metallo fornendo ossidi acidi, come nei permanganati del cui sale di potassio si è già detto.
Il biossido di manganese (MnO2) è stato ampiamente utilizzato nelle batterie “a secco” zinco-carbone[4]. Lo stesso materiale funziona anche nelle più recenti batterie alcaline, che utilizzano la stessa reazione di base, ma una diversa miscela di elettroliti. Nel 2002 sono state utilizzate più di 230.000 tonnellate di biossido di manganese per questo scopo e sono attualmente in continuo aumento causa lo sviluppo delle auto elettriche.
Il monossido di manganese (MnO) è un pigmento marrone che si usa per vernici e si trova nelle terre naturali (ad esempio nella terra di Siena e nella terra di Siena bruciata ).
Composti del manganese si usano anche per togliere la tinta verdastra conferita al vetro dalle impurezze di ferro; a concentrazioni molto alte donano al vetro un colore violetto.
In chimica organica sono utilizzati come catalizzatori in molte sintesi.
Il riciclo degli scarti degli acciai e delle altre leghe non ferrose contenenti manganese procede come descritto nei precedenti post sul nickel e il cobalto, il metallo riciclato è riutilizzato nell’industria siderurgica. Per coloro particolarmente interessati ai dettagli del riciclaggio dei metalli dagli scarti di tale industria si rimanda al volume curato da Scott Sibley [1].
Il riciclo del manganese dalle batterie alcaline al litio per auto elettriche è più complicato perché lo si deve separare da litio, nickel e cobalto. Illustriamo qui il procedimento messo a punto da una nota fabbrica tedesca di automobili [2]. Con riferimento alla figura:
Riciclaggio manganese da batterie al litio
da ciascun elemento del sistema di batterie si tolgono dapprima i cavi elettronici da cui vengono separati alluminio e rame dall’acciaio, il corpo del modulo viene invece flottato e triturato poi asciugato e infine setacciato fino a ottenere una polvere nera contenente il manganese insieme a litio, nickel e cobalto. Questi metalli vengono poi separati singolarmente con un procedimento idrometallurgico.
In vista della costante diminuzione delle risorse minerarie e del contemporaneo aumento del consumo globale di manganese, lo sviluppo di tecnologie rispettose dell’ambiente per la ricerca di fonti alternative di Mn ha acquisito grande importanza. Il recupero dai residui minerari o metallici utilizzando gli approcci convenzionali è poco remunerativo a causa degli elevati costi di gestione e di energia coinvolti. Il recupero di Mn mediante biolisciviazione con diversi microrganismi può quindi diventare una valida alternativa verde alle attuali tecniche pirometallurgiche. La biolisciviazione è un complesso di operazioni che si compiono su materiali misti, contenenti metalli e altro materiale, al fine di portare in soluzione i metalli, lasciando come residuo indisciolto la porzione non metallica. La trasformazione è lenta se si usano reagenti inorganici (ad es. acidi), mentre è fortemente accelerata se alla soluzione acida si aggiungono particolari organismi, battéri o funghi. La biolisciviazione batterica è principalmente dovuta a influenza enzimatica, mentre quella fungina non è enzimatica.
Schema del meccanismo generale della biotrasformazione batterica intracellulare di Mn [3]
Una rassegna su questa interessante prospettiva “verde” per lo sfruttamento degli scarti di miniera e il riciclo del manganese è stata pubblicata da S. Gosh et al. [3].
Il manganese è un elemento essenziale per l’organismo umano. È presente come coenzima in diversi processi biologici, tra cui il metabolismo dei macronutrienti, la formazione delle ossa e i sistemi di difesa dai radicali liberi. È un componente fondamentale in dozzine di proteine ed enzimi. Il corpo umano contiene circa 12 mg di manganese, principalmente nelle ossa, il rimanente è concentrato nel fegato e nei reni. Nel cervello umano il manganese è legato a metalloproteine, in particolare la glutammina sintetasi negli astrociti[5].
L’enzima Mn-Superossido dismutasi (Mn-SOD) è il tipo di SOD presente nei mitocondri delle cellule eucariote, ma anche nella maggior parte dei batteri. Questo enzima è probabilmente uno dei più antichi, poiché quasi tutti gli organismi che vivono in presenza di ossigeno lo usano per affrontare gli effetti tossici del superossido (O2–), formato dalla riduzione del normale ossigeno molecolare (O2).
Cioccolato fondente, riso, noci, pasta e farina contengono discrete quantità del minerale, ma anche tutta una serie di aromi, dallo zafferano al prezzemolo, al basilico [4].
Negli Stati Uniti le dosi giornaliere raccomandate variano dai 1,2 ai 2,3 mg/giorno per i maschi ai 1,2 – 1,8 mg/giorno per le femmine a seconda dell’età. Per le donne incinte e i lattanti le dosi sono aumentate a 2 e 2,6 mg/giorno di manganese. In Europa la dose media raccomandata per individui maggiori di 15 anni è di 3,0 mg/giorno, che è pure quella consigliata per le donne incinte. Per bambini e ragazzi da 1 a 14 anni le dosi vanno da 0,5 a 2,0 mg/giorno.
Casi di deficienza da manganese sono comunque molto rari.
I composti di manganese sono meno tossici di quelli di altri metalli come il nickel e il rame. Tuttavia, l’esposizione a polveri e fumi di manganese non deve superare il valore massimo di 5 mg/m 3 anche per brevi periodi a causa del suo livello di tossicità. L’avvelenamento con manganese è stato associato a compromissione delle capacità motorie e a disturbi cognitivi.
A livelli di 500 mg/m3 il manganese diventa molto pericoloso per la salute e la vita.
Il manganese è importante anche nell’evoluzione fotosintetica dell’ossigeno nei cloroplasti delle piante. Per soddisfare il fabbisogno, la maggior parte dei fertilizzanti vegetali ad ampio spettro contiene manganese.
Infine un accenno al ciclo biochimico, ricordando anzitutto che con questo termine, tipico delle Scienze della Vita e della Terra e dell’Ecologia, si intende il percorso attraverso il quale una sostanza chimica si muove attraverso compartimenti biotici (biosfera) e abiotici (litosfera, atmosfera e idrosfera) della Terra. Nella figura è mostrata parte del ciclo dei macronutrienti e dei micronutrienti (oligoelementi) che comprende anche il manganese.
Ciclo biogeochimico schematico di macro e micronutrienti
Come ricordato più volte in questo blog molti cicli biogeochimici sono attualmente studiati per la prima volta poiché i cambiamenti climatici e l’impatto delle attività umane stanno cambiando drasticamente la velocità, l’intensità e l’equilibrio di questi cicli relativamente poco conosciuti.
Per chi volesse saperne di più, rimando alla citazione [5].
Opere consultate
https://en.wikipedia.org/wiki/Manganese
Bibliografia
[1] S. F. Sibley (Ed.), Flow Studies for Recycling Metal Commodities in the United States., U.S. Geological Survey, Reston, Virginia, 2004.
[2] https://www.volkswagen-newsroom.com/en/stories/lithium-to-lithium-manganese-to-manganese-4662
[3] S. Gosh et al., A greener approach for resource recycling: Manganese bioleaching., Chemosphere, 2016, 154, 628-639.
[4] http://www.dietabit.it/alimenti/manganese/
[5] V. Cilek (a cura di), Earth System: History and Natural Variability – Volume IV, UNESCO-EOLSS, 2009, pp. 229-249.
[1] Il nome magnesia fu infine usato per riferirsi solo alla bianca magnesia alba (ossido di magnesio), che fornì il nome di magnesio per l’elemento libero quando fu isolato più di trenta anni dopo, precisamente nel 1808 da Humphrey Davy.
[2] Michele Mercati (1541 – 1593) medico italiano, fu sovrintendente dell’Orto Botanico Vaticano sotto i papi Pio V, Gregorio XIII, Sisto V e Clemente VIII. Fu uno dei primi studiosi a riconoscere gli strumenti di pietra preistorici come oggetti creati dall’uomo piuttosto che pietre naturali o mitologiche.
[3] Johan Gottlieb Gahn (1745 – 1818), chimico e metallurgista svedese, isolò il manganese metallico nel 1774. Dieci anni dopo fu nominato membro dell’Accademia Reale Svedese delle Scienze.
[4] Dette anche pile Leclanché, dal nome del loro inventore nel 1866. Il biossido di manganese impastato con cloruro d’ammonio funge da accettore di idrogeno nelle reazioni che avvengono al catodo di zinco. La barretta di carbone funge unicamente come trasportatore di elettroni.
[5] Gli Astrociti sono caratteristiche cellule a forma di stella presenti nel cervello e nel midollo spinale. Svolgono molte funzioni, tra cui il supporto biochimico alle cellule endoteliali che formano la barriera emato-encefalica, la fornitura di sostanze nutritive al tessuto nervoso, il mantenimento dell’equilibrio degli ioni extracellulari e un ruolo nel processo di riparazione e cicatrizzazione del cervello e del midollo spinale dopo trauma o lesioni.